Epoxidation of Palm Olein as Base Oil for Calcium Complex Bio Grease

Authors

  • Erliza Hambali SBRC IPB University
  • Ni Nyoman Indah Adi Puspita

DOI:

https://doi.org/10.35876/ijop.v4i1.57

Keywords:

Iodine, NLGI, oxirane number, RBDPO

Abstract

The development of palm oil bio grease aimed to substitute grease made from petroleum with a material that is more environmentally friendly. The enhancement of bio grease characteristics can be performed by chemical synthesis. This research aimed to obtain best mole ratio of palm olein and H2O2 in the epoxidation process, and to analyze the physical characteristics of the bio grease products. This process used acetic acid and H2O2 with mole ratio variations of olein and H2O2 of 1: 3, 1: 6, and 1: 9. The mole ratio was selected based on the analysis of iodine and oxiran numbers, which was then processed into bio grease with the addition of calcium stearate and calcium acetate. Epoxidized olein with a mole ratio of olein and H2O2 of 1: 9 was selected because it achieved the highest average oxiran number (0.99), the lowest iodine number (33.09), and it was based on ANOVA and LSD tests. The higher the oxiran number, the more epoxide compounds produced. Low iodine number indicated low unsaturation in fatty acids. The peroxy acid used in the epoxidation process reacted with unsaturated compounds, so that the lower iodine number in the epoxidized olein produced more epoxide compounds. Bio grease had a light cream color, density of 0.96 g/cm3, viscosity of 31,280 mPa.s, unworked penetration of 438 (0.1 mm), worked penetration of 443 (0.1 mm), dropping point < 26°C, corrosion resistance of 2c and NLGI number 00.

Downloads

Download data is not yet available.

References

[ASTM] American Society for Testing Material. 2002. ASTM D217: Standard Test Methods for Cone Penetration of Lubricating Grease. Pennsylvania (US): American Society for Testing Material.

[ASTM] American Society for Testing Material. 2002. ASTM D566: Standard Test Methods for Dropping Point of Lubricating Grease. Pennsylvania (US): American Society for Testing Material.

[ASTM] American Society for Testing Material. 2004. ASTM D130: Standard Test Methods for Corrosiveness to Copper from Petroleum Products by Copper Strip Test. Pennsylvania (US): American Society for Testing Material.

Abdulbari HA, Rosli MY, Abdurrahman HN, Nizam MK. 2011. Lubricating grease from spent bleaching earth and waste cooking oil: tribology properties. Int J Phy Sci. 6(20):4695-4699.

Abdullah S. 2012. Pengaruh waktu reaksi terhadap bilangan hidroksil pada pembentukan polyol dari epoksidasi CPO dan curcas oil. J Konvers. 1(1):15-24.

Adhvaryu A. 2004. Preparation of soybeoil-based greases: Effect of composition and structure on physical properties. J Agric Food Chem. 52:204-214.

Andriana. 2009. Pembuatan gemuk bio foodgrade menggunakan thickener sabun aluminium kompleks. [Skripsi]. Depok (ID): Universitas Indonesia

Campanella A, Baltan´as MA. 2005. Degradation of the oxirane ring of epoxidized vegetable oils with hydrogen peroxide using an ion exchange resin. Catalysis Today. 12: 208–214.

Ghozali M, Meliana Y, Fahmiati S, Triwulandari E, Darmawan A. 2018. Sintesis asam oleat terepoksidasi dengan katalis asam asetat. J Kimia Kemasan. 40(2):63-70.

Hassan MJ, Ani FN, Syahrullail. 2015. Tribological features of refined, bleached and deodourised (RBD) palm olein blends with mineral oil. J Mekan. 38 (1):22-31.

Hutagaol EH. 2012. Pembuatan gemuk bio campuran Li-Ca 12HSA asetat kompleks menggunakan base oil minyak sawit terepoksidasi. [Skripsi]. Depok (ID): Universitas Indonesia.

Lestari S, Irdoni, Nirwana. 2019. Pembuatan grease dari minyak biji karet: mempelajari pengaruh campuran LiOH-Ca(OH)2 dan rasio base oil. Jom FTEKNIK. 6(2):1-7.

Lestari P, Sukmawati. 2019. Pembuatan sabun logam campuran (Al-Ca) sebagai thickener pelumas padat (grease) dari palm fatty acid distillate (PFAD). SEMNASTEK UISU. 2(1):49-52.

Maisaroh, Susetyo IB. 2017. Optimasi pada epoksidasi asam oleat sebagai bahan baku dalam sintesis asam 9,10-Dihidroksi Stearat (DHSA). J Agro-based Indust. 34(2):96-103.

Pafford, Exxon. 1997. Polyol Ester Composition with Unconverted Hydroxyl Group for Use as Lubricant Base Stock. US Patent 5698502.

Petrucci RH. 1987. Kimia Dasar (Prinsip dan Terapan Modern). Jakarta (ID): Erlangga.

Sharma BK, Adhvaryu A, Perez JM, Erhan SZ. 2006. Biobased grease with improved oxidation performance for industrial application. J Agric Food Chem. 54:7594-7599.

Sinaga M S. 2007. Pengaruh katalis H2SO4 pada reaksi epoksidasi metil ester PFAD (Palm Fatty Acid Distillate). J Teknol Pros. 6(1): 70-74.

Syawaluddin N. 2009. Pembuatan senyawa epoksi dari metil ester asam lemak sawit destilat menggunakan katalis amberlite. [Thesis]. Medan (ID): Universitas Sumatera Utara.

Wartawan A L. 1998. Pelumas, Otomotif dan Industri. Jakarta (ID): Balai Pustaka.

Wulandari M. 2009. Pembuatan gemuk bio food grade menggunakan thickener sabun kalsium kompleks. [Skripsi]. Depok(ID): Universitas Indonesia.

Yanto T, Naufalin R, Erminawati. 2009. Pengaruh penambahan antikorosi terhadap karakteristik pelumas food grade grease dengan bahan dasar minyak sawit. Makalah Seminar Tahunannan MAKSI. Bogor (ID): MAKSI.

Zahir OSD. 2012. Penggunaan asam stearat dan asam oleat sebagai pengganti asam 12-hidroksistearat dalam pembuatan sabun sebagai thickener pada gemuk bio kalsium kompleks. [Skripsi]. Depok (ID): Universitas Indonesia.

Downloads

Published

2021-06-25

How to Cite

Hambali, E., & Puspita, N. N. I. A. (2021). Epoxidation of Palm Olein as Base Oil for Calcium Complex Bio Grease. International Journal of Oil Palm, 4(1), 22–30. https://doi.org/10.35876/ijop.v4i1.57

Issue

Section

Articles