Sea Level Rise Impacts on Coastal Oil Palm Plantations
Keywords:
Climate adaptation, Coastal Vulnerability, NDVI trend, Remote Sensing, Satellite altimetryAbstract
Indonesia's coastal oil palm plantations face unprecedented threats from accelerating sea level rise, with regional rates of 4–5 mm year?¹ significantly exceeding global averages. This study presents the first comprehensive satellite-based assessment of sea level rise impacts on coastal oil palm vulnerability, focusing on Dumai City, Riau Province. We utilized five primary datasets spanning from 2020–2024: Landsat 8/9 and Sentinel-2 imagery for plantation mapping, SRTM DEM for topographic analysis, satellite altimetry for sea level measurements, and ground truth data for validation. Cross-wavelet analysis revealed an exceptionally strong negative correlation (r = -0.857) between sea level anomalies and coastal land cover changes, with a 30-day lag period indicating plantation ecosystem response time. NDVI trend analysis showed significant vegetation decline (-0.072 NDVI/year) over the study period, with plantation health deteriorating from optimal conditions in 2020 (mean NDVI: 0.608) to critical levels by 2024 (mean NDVI: 0.335). Land cover change detection revealed extensive palm oil expansion (+4,848 ha, +26.3%) occurring through conversion of natural forest (-3,114 ha, -22.8%) and mangrove ecosystems (-1,300 ha, -19.5%). Results reveal that 78% of coastal oil palm plantations are located within 5 km of shoreline on low-lying areas with elevations below 3 meters above sea level. The vulnerability assessment identified 2,847 hectares (64% of total coastal plantations) as highly vulnerable to inundation and saltwater intrusion, representing USD 12.3 million in annual production value at risk.
Downloads
References
Austin KG, Schwantes A, Gu Y, Kasibhatla PS. 2019. What causes deforestation in Indonesia? Environmental Research Letters. 14(2). doi:10.1088/1748-9326/aaf6db.
[BPS] Badan Pusat Statistik. Statistics Indonesia. 2020.
Baugh CA, Bates PD, Schumann G, Trigg MA. 2013. SRTM vegetation removal and hydrodynamic modeling accu-racy. Water Resour Res. 49(9):5276–5289. doi:10.1002/wrcr.20412.
Baum A, Rixen T, Samiaji J. 2007. Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuar Coast Shelf Sci. 73(3–4):563–570.
Berra EF, Fontana DC, Yin F, Breunig FM. 2024. Harmonized Landsat and Sentinel-2 data with Google Earth Engine. Remote Sens (Basel). 16(15). doi:10.3390/rs16152695.
Claverie M, Ju J, Masek JG, Dungan JL, Vermote EF, Roger JC, Skakun S V., Justice C. 2018. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens Environ. 219:145–161.
Danylo O, Pirker J, Lemoine G, Ceccherini G, See L, McCallum I, Hadi, Kraxner F, Achard F, Fritz S. 2021. A map of the extent and year of detection of oil palm plantations in Indonesia, Malaysia and Thailand. Sci Data. 8(1). doi:10.1038/s41597-021-00867-1.
Descals A, Szantoi Z, Meijaard E, Sutikno H, Rindanata G, Wich S. 2019. Oil palm (Elaeis guineensis) mapping with details: Smallholder versus industrial plantations and their extent in riau, Sumatra. Remote Sens (Basel). 11(21).
Dislich C, Keyel AC, Salecker J, Kisel Y, Meyer KM, Auliya M, Barnes AD, Corre MD, Darras K, Faust H, et al. 2017. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews. 92(3):1539–1569. doi:10.1111/brv.12295.
Drusch M, Del Bello U, Carlier S, Colin O, Fernandez V, Gascon F, Hoersch B, Isola C, Laberinti P, Martimort P, et al. 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens Environ. 120:25–36.
Gaveau DLA, Locatelli B, Salim MA, Yaen H, Pacheco P, Sheil D. 2019. Rise and fall of forest loss and industrial plantations in Borneo (2000–2017). Conserv Lett. 12(3).
Grinsted A, Moore JC, Jevrejeva S. 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics. 11: 561–566.
Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, et al. 2013. High-resolution global maps of 21st-century forest cover change. Science (1979). 342(6160):850–853. doi:10.1126/science.1244693.
Hastuti AW, Nagai M, Suniada KI. 2022. Coastal vulnerability assessment of Bali Province, Indonesia using remote sensing and GIS approaches. Remote Sens (Basel). 14(17). doi:10.3390/rs14174409.
Hein L, Sumarga E, Quiñones M, Suwarno A. 2022. Effects of soil subsidence on plantation agriculture in Indonesian peatlands. Reg Environ Change. 22(4). doi:10.1007/s10113-022-01979-z.
Hooijer A, Page S, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences. 9(3):1053–1071. doi:10.5194/bg-9-1053-2012.
Kulp S, Strauss BH. 2016. Global DEM errors underpredict coastal vulnerability to sea level rise and flooding. Front Earth Sci (Lausanne). 4. doi:10.3389/feart.2016.00036.
Kulp SA, Strauss BH. 2018. CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sens Environ. 206:231–239.
Lumban-Gaol J, Sumantyo JTS, Tambunan E, Situmorang D, Antara IMOG, Sinurat ME, Suhita NPAR, Osawa T, Arhatin RE. 2024. Sea level rise, land subsidence, and flood disaster vulnerability assessment: A case study in Medan City, Indonesia. Remote Sens (Basel). 16(5).
Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ. 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding - A global assessment. PLoS One. 10(3). doi:10.1371/journal.pone.0118571.
Nicholls RJ, Cazenave A. 2010. Sea-Level rise and its impact on coastal zones. Science (1979). 328(5985):1517–1520.
Nurmasari Y, Wijayanto AW. 2021. Oil palm plantation detection in Indonesia using sentinel-2 and landsat-8 optical satellite imagery (case study: Rokan Hulu Regency, Riau Province). International Journal of Remote Sensing and Earth Sciences (IJReSES). 18(1):1.
Obidzinski K, Andriani R, Komarudin H, Andrianto A. 2012. Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia. Ecology and Society. 17(1). doi:10.5751/ES-04775-170125.
Oelviani R, Adiyoga W, Bakti IGMY, Suhendrata T, Malik A, Chanifah C, Samijan S, Sahara D, Sutanto HA, Wulanjari ME, et al. 2024. Climate change driving salinity: An overview of vulnerabilities, adaptations, and challenges for Indonesian agriculture. Weather, Climate, and Society. 16(1):29–49.
O’Loughlin FE, Paiva RCD, Durand M, Alsdorf DE, Bates PD. 2016. A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sens Environ. 182:49–59.
Pacheco P, Gnych S, Dermawan A, Komarudin H, Orkada B. 2017. The palm oil global value chain: Implications for economic growth and social and environmental sustainability. Working Paper 220. Bogor, Indonesia: CIFOR
Perri S, Molini A. 2022. Declining hydrologic function of coastal wetlands in response to saltwater intrusion. Atmospheric and Oceanic Physics. Cornell University.
Sampson CC, Smith AM, Bates PD, Neal JC, Trigg MA. 2016. Perspectives on open access high resolution digital elevation models to produce global
flood hazard layers. Front Earth Sci. 3(85). doi:10.3389/feart.2015.00085.
Siegel H, Gerth M, Stottmeister I, Baum A, Samiaji J. 2019. Remote Sensing of Coastal Discharge of SE Sumatra (Indonesia). In: Barale V, Gade M, editors. Remote Sensing of the Asian Seas. Cham: Springer International Publishing. 359–376.
Sumarga E, Hein L, Hooijer A, Vernimmen R. 2016. Hydrological and economic effects of oil palm cultivation in Indonesian peatlands. Ecology and Society. 21(2). doi:10.5751/ES-08490-210252.
Temmerman S, Meire P, Bouma TJ, Herman PMJ, Ysebaert T, De Vriend HJ. 2013. Ecosystem-based coastal defence in the face of global change. Nature. 504(7478):79–83. doi:10.1038/nature12859.
Tivianton TA, Barus B, Purwanto MYJ, Anwar S, Widiatmaka, Laudiansyah R. 2021. Temporal NDVI analysis to detect the effects of seawater intrusion on rice growth in coastal areas. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd. 662:28–35.
Torrence C, Compo GP. 1998. A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society. 79(1):61–78.
Vermote E, Justice C, Claverie M, Franch B. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens Environ. 185:46–56. doi:10.1016/J.RSE.2016.04.008.
Xu K, Qian J, Hu Z, Duan Z, Chen C, Liu J, Sun J, Wei S, Xing X. 2021. A new machine learning approach in detecting the oil palm plantations using remote sensing data. Remote Sens (Basel). 13(2):1–17. doi:10.3390/rs13020236.
Xu Y, Yu L, Li W, Ciais P, Cheng Y, Gong P. 2020. Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016. Earth Syst Sci Data. 12(2):847–867. doi:10.5194/essd-12-847-2020.
Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A. 2003. Monitoring vegetation phenology using MODIS. Remote Sens Environ. 84(3):471–475. doi:10.1016/S0034-4257(02)00135-9.
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2025 Jogi Panggabean, Julian Kurnia, Teuku Shaumul

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.