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ABSTRACT 

 
Indonesia's coastal oil palm plantations face unprecedented threats from accelerating sea 

level rise, with regional rates of 4–5 mm year⁻¹ significantly exceeding global averages. This study 
presents the first comprehensive satellite-based assessment of sea level rise impacts on coastal 
oil palm vulnerability, focusing on Dumai City, Riau Province. We utilized five primary datasets 
spanning from 2020–2024: Landsat 8/9 and Sentinel-2 imagery for plantation mapping, SRTM 
DEM for topographic analysis, satellite altimetry for sea level measurements, and ground truth data 
for validation. Cross-wavelet analysis revealed an exceptionally strong negative correlation (r = -
0.857) between sea level anomalies and coastal land cover changes, with a 30-day lag period 
indicating plantation ecosystem response time. NDVI trend analysis showed significant vegetation 
decline (-0.072 NDVI/year) over the study period, with plantation health deteriorating from optimal 
conditions in 2020 (mean NDVI: 0.608) to critical levels by 2024 (mean NDVI: 0.335). Land cover 
change detection revealed extensive palm oil expansion (+4,848 ha, +26.3%) occurring through 
conversion of natural forest (-3,114 ha, -22.8%) and mangrove ecosystems (-1,300 ha, -19.5%). 
Results reveal that 78% of coastal oil palm plantations are located within 5 km of shoreline on low-
lying areas with elevations below 3 meters above sea level. The vulnerability assessment identified 
2,847 hectares (64% of total coastal plantations) as highly vulnerable to inundation and saltwater 
intrusion, representing USD 12.3 million in annual production value at risk. 

 
Keywords: Climate adaptation, coastal vulnerability, NDVI trend, remote sensing, satellite altimetry  

 
INTRODUCTION 

Indonesia's oil palm industry 
produces 47% of global palm oil supply and 
contributes significantly to the national 
economy, yet faces increasing vulnerability 
to climate change impacts, particularly sea 
level rise in coastal regions (BPS 2020; 
Danylo et al. 2021). The country's oil palm 
cultivation has expanded to over 16 million 
hectares, with substantial portions located 
in low-lying coastal provinces where 
plantation development concentrated on 
coastal peatlands inherently susceptible to  
 

 
both subsidence and sea level rise 
(Descals et al. 2019; Xu et al. 2020). Riau 
Province accounts for 2.4 million hectares 
of oil palm plantations, representing 20% of 
national production, with over 80% 
established on coastal peatlands experi-
encing ongoing subsidence due to 
drainage required for cultivation (Sumarga 
et al. 2016). 

The intersection of oil palm cultivation 
and coastal vulnerability creates complex 
challenges for sustainable agricultural 
development. Recent studies have 
documented the interconnected impacts of
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peatland drainage, subsidence, and 
coastal flooding on oil palm production 
systems (Hooijer et al. 2012; Sumarga et 
al. 2016). Drainage required for oil palm 
cultivation on peatlands causes progress-
sive soil subsidence, with rates reaching 
2.8 cm year⁻¹ in newly drained areas, 
progressively increasing flood risks and 
threatening plantation viability as oil palm 
is highly sensitive to waterlogged 
conditions (Hooijer et al. 2012). Further-
more, coastal peatland degradation 
increases vulnerability to tidal flooding and 
saltwater intrusion, with formerly protective 
coastal ecosystems now contributing to 
agricultural vulnerability rather than provid-
ing natural protection (Hastuti et al. 2022). 

Despite these methodological 
advances, no comprehensive study has 
systematically assessed the vulnerability of 
Indonesian coastal oil palm plantations to 
sea level rise using integrated satellite 
remote sensing approaches. This 
knowledge gap is particularly critical given 
the rapid pace of both sea level rise and oil 
palm expansion in Indonesian coastal 
areas, with some coastal areas 
experiencing combined land subsidence 
and sea level rise rates exceeding 10 cm 
year⁻¹ (Lumban-Gaol et al. 2024). 

 
MATERIALS AND METHODS 

This study focuses on Dumai City, 
Riau Province, Sumatra, Indonesia (1°40'N 
–1°45'N, 101°25'E–101°30'E), which 
serves as a representative case study for 
coastal oil palm vulnerability assessment 
(Figure 1). Dumai City was selected due to 
its strategic importance as a major palm oil 
export hub, with approximately 80% of the 
municipal area consisting of coastal 
peatlands where extensive oil palm 
cultivation has been established over the 
past three decades (Siegel et al. 2019). 
The study area encompasses approxi-
mately 1,623 km² of coastal lowlands with 
elevations ranging from 0 to 15 meters 
above sea level, characterized by 
extensive peat deposits with depths 
reaching 3–8 meters (Baum et al. 2007). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Study area location map showing 

Dumai City, Riau Province, 
Indonesia with coastal zone 
boundaries. 

 
The coastline extends approximately 

45 km along the Malacca Strait, featuring a 
complex mosaic of oil palm plantations, 
natural mangrove remnants, aquaculture 
ponds, and urban development. Dumai 
experiences a tropical humid climate with 
annual precipitation of approximately 2,500 
mm and mean temperatures of 26–28 °C 
throughout the year, conditions optimal for 
oil palm cultivation but creating challenges 
for drainage management on peat soils 
(Siegel et al. 2019). The area is influenced 
by semi-diurnal tides with ranges of 1.5–

3.5 meters, creating extensive intertidal 
zones that directly interact with plantation 
drainage systems. 
 
Data Sources 

This research utilized five compre-
hensive datasets spanning 2020–2024. 
Landsat 8/9 Optical Imagery was obtained 
from the United States Geological Survey 
(USGS) Earth Explorer platform, with 
Landsat Collection 2 Level-2 Surface 
Reflectance products selected for 
consistent atmospheric correction 
(Vermote et al. 2016). A total of nine cloud-
free images were acquired on specific 
dates: 2020-10-18, 2021-02-23, 2021-06-
15, 2021-07-17, 2021-08-02, 2023-06-13, 
2024-07-25, 2024-09-19, and 2024-12-16. 
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Sentinel-2 Multispectral Imagery was 
downloaded from the European Space 
Agency's Copernicus Open Access Hub, 
utilizing Level-2A Surface Reflectance 
products providing enhanced 10-meter 
spatial resolution (Drusch et al. 2012).  

Sea level altimetry data was obtained 
from the Copernicus Marine Environment 
Monitoring Service (CMEMS) Multi-
Mission Altimeter Satellite Gridded Sea 
Level Anomalies dataset, providing daily 
mean sea level anomalies at 0.125° spatial 
resolution for the Malacca Strait region 
(IPCC 2021). Digital Elevation Model data 
from the Shuttle Radar Topography 
Mission (SRTM) at 30-meter resolution 
was utilized following the vegetation 
correction methodology of O'Loughlin et al. 
(2016). Ground truth data for classification 
accuracy assessment contained 609 
reference points distributed across 
different plantation types, ages, and 
environmental conditions. 

 
Data Processing and Analysis 

All satellite imagery processing was 
conducted using open-source software 
including QGIS 3.28 and Python-based 
libraries (GDAL, Rasterio, NumPy) to 
ensure reproducibility (Hansen et al. 2013). 
Landsat images were atmospherically 
corrected using the Land Surface 
Reflectance Code (LaSRC) algorithm, 
which accounts for atmospheric scattering 
effects in tropical coastal environments 
(Vermote et al. 2016). Geometric 
correction was systematically applied to 
ensure precise co-registration between 
multi-temporal images using ground 
control points identified from stable 
infrastructure features. Oil palm plantations 
were mapped through systematic visual 
interpretation of Sentinel-2 imagery 
combined with automated vegetation index 
analysis, following established criteria for 
plantation identification including regular 
geometric planting patterns, characteristic 
canopy texture, and spectral properties 
(Descals et al. 2019; Nurmasari and 
Wijayanto 2021). Four primary land cover 
classes were defined: oil palm plantations 

(subdivided into young 0–5 years and 
mature >5 years), natural forest and 
mangroves, other agriculture and bare 
land, and water bodies. 

Normalized Difference Vegetation 
Index (NDVI) was calculated from all 
available imagery using the standard 
formula NDVI = (NIR - Red) / (NIR + Red), 
where NIR represents near-infrared 
reflectance and Red represents red 
wavelength reflectance (Xu et al. 2021). A 
comprehensive dekadal analysis was 
implemented covering 180 dekads (36 
dekads per year × 5 years) from 2020–
2024, with temporal interpolation applied to 
fill data gaps using spline interpolation 
methods. Cross-wavelet analysis between 
sea level anomalies and oil palm plantation 
health indicators was performed following 
the methodology of Grinsted et al. (2004). 
The analysis involved systematic time 
series preprocessing with detrending and 
normalization, followed by Butterworth 
bandpass filtering targeting periods of 20–
90 days. Continuous Wavelet Transform 
analysis was implemented using Morlet 
wavelets with a central frequency 
parameter of ω₀ = 6 (Torrence and Compo 
1998). A comprehensive plantation 
vulnerability assessment was developed 
by adapting the Coastal Vulnerability Index 
methodology of Hastuti et al. (2022) 
specifically for oil palm agricultural 
systems. The assessment incorporated 
five key variables: coastal slope, elevation 
above mean sea level, distance from 
coastline, substrate type, and plantation 
age. Each vulnerability variable was 
systematically classified into five 
vulnerability categories ranging from very 
low to very high risk, with rankings 
assigned based on established thresholds 
for oil palm cultivation requirements 
(Sumarga et al. 2016). 

 
RESULTS AND DISCUSSION 

 
Oil Palm Plantation Distribution and 
Vulnerability 

According to our thorough spatial 
analysis, oil palm plantations will dominate
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the land-use type in the Dumai coastal 
region by 2024, occupying roughly 23,276 
hectares. Significantly, 78% of these 
plantations are located within five 
kilometers of the coast, mostly on low-lying 
peatlands with mean elevations less than 
three meters above sea level, an area that 
is extremely susceptible to tidal flooding 
and sea level rise (Sumarga et al. 2016). 
An analysis of the age distribution reveals 
that mature stands created between 1995 
and 2010 make up 68% of the planted 
area. With their closed canopies and vast 
infrastructure networks, these established 
plantations are a significant financial 
investment and are especially vulnerable 
to climate-related effects like flooding and 
soil subsidence (Descals et al. 2019). 
There is extensive evidence linking 
peatland drainage to progressive 
subsidence, which frequently occurs at 
rates of 2.8 cm/year (Hooijer et al. 2012; 
Sumarga et al. 2016). Approximately 29%  

of peatland plantations were already below 
safe elevation levels by 2009, according to 
patterns mirrored in the Rajang Delta 
(Sarawak, Malaysia). If current subsidence 
continues, it is predicted that 56% of these 
plantations will be flooded in 50 years (Hein 
et al. 2022).  
 
NDVI Temporal Dynamics and 
Plantation Health 

A clear and statistically significant 
decline in vegetation vigor is evident in the 
dekadal NDVI time-series for Dumai's 
coastal oil palm plantations (2020–2024; 
Figure 2), with mean NDVI dropping from 
0.608±0.089 in 2020 to 0.335±0.038 by 
2024. Compared to the usual inter-annual 
fluctuations observed in tropical oil palm 
systems, the linear trend of -0.072 NDVI 
units yr⁻¹ (R² = 0.892, p < 0.001) suggests a 
persistent degradation trajectory 
(Nurmasari and Wijayanto 2021; Xu et al. 
2021).

 

 
Figure 2 NDVI temporal analysis of oil palm plantations (2020–2024) showing dekadal time 

series, annual means, and trend analysis for coastal plantation areas in Dumai 
City with seasonal patterns and management cycle impacts. 
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 The temporal analysis demon-
strated pronounced inter-annual variability, 
with 2020 representing optimal plantation 
conditions characterized by a mean NDVI 
of 0.608±0.089, reflecting healthy canopy 
development and optimal productivity 
conditions. This optimal condition was 
followed by a systematic decline beginning 
in 2021 when mean NDVI decreased to 
0.521±0.067, marking the onset of a 
persistent degradation trend that may 
reflect the combined impacts of 
environmental stress, aging plantation 
infrastructure, and changing climate 
conditions affecting palm productivity (Xu 
et al. 2021). By 2024, conditions had 
deteriorated to reach critical levels with a 
mean NDVI of 0.335±0.038, representing 
the lowest plantation vigor recorded during 
the entire study period. 

This downward trajectory is confirmed 
to be steep and statistically significant by 
trend analysis (-0.072 NDVI units annually; 
R2 = 0.892, p<0.001). The most severe loss 
happened between 2020 and 2022, when 
canopy vigor decreased by 0.273 NDVI 
units, or 45 percent, in just two years. This 
is significantly more than the range of 
natural inter-annual variability for tropical 
oil palm systems and suggests severe 
environmental stress as opposed to normal 
ageing (Xu et al. 2021). Once electrical 
conductivity surpasses ~4 dS/m, saltwater 
intrusion and tidal flooding are known to 
cause osmotic stress on roots and 
deteriorate soil structure (Hooijer et al. 
2012; Sumarga et al. 2016). At the same 
time, ground elevations have decreased 
and waterlogging events have been 
prolonged due to subsidence rates of about 
2.8 cm yr⁻¹ caused by peatland drainage 
for cultivation (Hooijer et al. 2012; Hein et 
al. 2022). Rather than just reflecting 
seasonal senescence, these hydrological 
stressors collectively are responsible for 
the NDVI's systematic downward shift. The 
time series does, in fact, exhibit mid-year 
dekadal peaks that correspond to short 
bursts of favourable moisture conditions 
(Drusch et al. 2012); however, the 

amplitude of these seasonal rebounds 
significantly diminishes after 2021, 
indicating cumulative stress residue in 
plantation health. The value of remote-
sensing indices as early-warning indicators 
for saltwater and flood stress is highlighted 
by a strong negative correlation (r = -0.857 
at a 30-day lag) between NDVI and sea-
level anomalies, which provides a 30-day 
response window for adaptive manage-
ment interventions (Torrence and Compo 
1998; Grinsted et al. 2004). 

 
Satellite-Ground Truth Validation 

The comparison between Harmo-
nized Landsat-Sentinel (HLS) satellite data 
and ground sensor measurements (Figure 
3) provided crucial validation of remote 
sensing accuracy for oil palm plantation 
monitoring. Ground sensor data, 
comprising 609 observations collected 
throughout the study period from various 
plantation locations and age classes, 
consistently showed higher NDVI values 
compared to satellite observations, with 
mean values of 0.671±0.095 and a range 
spanning from 0.388 to 0.926 (Nurmasari 
and Wijayanto 2021). Conversely, the two 
HLS Sentinel-2 pixels that were available 
produced mean NDVI values that were 
lower, at 0.488±0.002, suggesting that HLS 
consistently underestimates in comparison 
to measurements made on the ground. 
This discrepancy results from the spatial 
averaging that 30 m resolution sensors 
inherently have (Claverie et al. 2018) as 
well as the well-established mixed-pixel 
effects that are common in agricultural 
landscapes that are fragmented and 
heterogeneous (Zhang et al. 2003). While 
absolute NDVI values may vary between 
area-averaged satellite observations and 
point-based ground measurements, this 
validation exercise also shows that HLS 
captures significant canopy dynamics due 
to the close temporal correspondence 
between the two-time series, which are 
characterized by peaks and troughs 
occurring within the same dekadal windows 
(r ≈ 0.85, p<0.001) (Berra et al. 2024). 
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Figure 3 Satellite-ground truth validation for oil palm monitoring showing comparison 

between HLS satellite data and ground sensor measurements with temporal 
patterns and accuracy assessment for plantation health indicators. 

 
 

Topographic Vulnerability Assessment 
Elevation estimates that are crucial 

for assessing flood risk in coastal 
plantation areas are significantly biased 
due to oil palm canopy interference, as 
demonstrated by the vegetation correction 
applied to the SRTM DEM (Figure 4). In 
accordance with O'Loughlin et al. (2016), 
the analysis found mean vegetation 
heights of 4.05 ± 1.12 m across oil palm 
plantation areas by correlating plantation 
NDVI with canopy height. Maximum 
heights in mature stands reached 6.72 m. 
These vegetation effects demonstrated the 
significant influence of oil palm vegetation 
on radar-derived elevation measurements, 
resulting in mean elevation corrections of 
2.23 ± 0.85 m, with maximum adjust-ments 
up to 3.00 m in areas with the densest palm 
canopy cover. Following vegetation 
correction, mean elevation values 
decreased from 21.36 m to 19.14 m, 
indicating that many plantation areas are 

significantly lower and more susceptible to 
flooding than previously thought. Serious 
ramifications result from this downward 
adjustment: floodplain boundaries can be 
moved by several hundred meters due to a 
1 m error in coastal DEMs (Sampson et al. 
2016). Interestingly, the uncorrected DEM 
would have incorrectly placed about 30% 
of plantation areas above critical elevation 
thresholds (>3 m), which after correction 
fell below or close to this limit. SRTM-
based coastal hazard assessments are 
therefore vulnerable to systematic 
underprediction bias in the absence of 
vegetation correction, a problem that has 
been shown in flood and sea-level rise 
studies worldwide (Kulp and Strauss 
2016). In order to generate precise hazard 
mapping that can guide site selection, 
drainage infrastructure design, and land-
use policy particularly in low-lying coastal 
oil palm plantations, vegetation-corrected 
DEMs must be used (Baugh et al. 2013). 
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Figure 4 Topographic analysis and vegetation correction showing: (a) original SRTM DEM, 

(b) oil palm plantation NDVI distribution, (c) estimated canopy height corrections, 
and (d) vegetation-corrected DEM for accurate flood risk assessment. 
 

Sea Level Rise and Plantation 
Response Coupling 

The cross-wavelet analysis (Figure 5) 
revealed exceptionally strong coupling 
between sea level anomalies and oil palm 
plantation health indicators, demonstrating 
one of the most robust climate-agricultural 
relationships documented in tropical 
coastal environments. The analysis 
identified a maximum cross-correlation of r 
= -0.857, representing a very strong 
negative relationship between sea level 
variations and plantation vegetation vigor 
that indicates systematic impacts of 
oceanic conditions on terrestrial 
agricultural productivity (Grinsted et al. 
2004). This correlation was optimized at a 
lag time of 30 days, indicating that 
plantation ecosystem responses to sea 
level forcing occur approximately one 
month after oceanographic changes, 

providing valuable early warning potential 
for plantation management and adaptive 
responses to environmental stress. The 
dominant coupling period identified 
through the cross-wavelet transform was 
180 days, corresponding to intra-seasonal 
climate interactions that influence both 
oceanic and terrestrial systems in the 
Indonesian coastal region (Torrence and 
Compo 1998).  

The consistently negative correlation 
indicates that rising sea levels 
systematically reduce oil palm plantation 
vigor through multiple interconnected 
mechanisms including saltwater intrusion 
into plantation drainage systems, tidal 
inundation creating prolonged soil 
saturation stress, coastal erosion threate-
ning plantation infrastructure, and storm 
surge amplification during extreme 
weather events. 
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Figure 5  Sea level rise and oil palm plantation response analysis showing: (a) time series 

correlation with lag optimization, (b) filtered signals demonstrating coupling 
relationships, and (c) cross-wavelet coherence spectrum for different time scales. 

 
Mechanistically, rising sea levels 

cause saltwater intrusion into drainage 
systems and ongoing soil saturation. This 
phenomenon has also been seen in rice 
paddy systems, where saline intrusion led 
to observable drops in NDVI (Tivianton et 
al. 2021). In tropical coastal wetlands, 
where saltwater intrusion hinders plant 
transpiration and alters soil-aeration 
dynamics, similar ecohydrological feed-
backs have been reported (Perri and Molini 
2022 Sep 23). These empirical parallels 
lend credence to the idea that sea level rise 
affects photosynthetic efficiency and 
canopy vigor in oil palm directly, possibly 
through osmotic stress and root-zone 
hypoxia, in addition to altering groundwater 
regimes. Our findings highlight the 
systemic vulnerability of low-lying 
plantations to climate-driven oceano-
graphic shifts, especially considering the 
documented effects of sea-level rise on 
salinisation and productivity loss in deltaic 
agricultural zones (Oelviani et al. 2024). 
The temporal coupling shown here further 
supports the incorporation of NDVI-based 
remote sensing and real-time sea-level 
monitoring into plantation risk-mana-
gement frameworks, allowing for prompt 
interventions to prevent infrastructure 
damage and maintain productivity in 
vulnerable coastal landscapes. 
 

Land Cover Transitions and Plantation 
Expansion 

Multi-temporal analysis revealed 
significant land cover transitions over the 5-
year study period (Figure 6), demon-
strating extensive ecosystem restructuring 
driven by continued oil palm expansion 
concurrent with environmental degradation 
processes. The most substantial change 
observed was the continued expansion of 
oil palm plantations, which increased by 
4,848 hectares representing a 26.3% 
growth from 18,428 hectares in 2020 to 
23,276 hectares in 2024, indicating 
persistent investment in coastal plantation 
development despite increasing environ-
mental risks (Gaveau et al. 2019). 

This expansion rate significantly 
exceeds the national average decline in oil 
palm development observed in other 
Indonesian regions (Austin et al. 2019). 
This expansion occurred through sys-
tematic conversion of remaining natural 
ecosystems, with natural forest areas 
experiencing the largest absolute loss of 
3,114 hectares (22.8%), decreasing from 
13,668 hectares in 2020 to 10,554 hectares 
in 2024. Mangrove ecosystems, which 
provide critical coastal protection services 
and natural buffers against sea level rise 
impacts, experienced significant degra-
dation  with  a  loss of 1,300  hectares 
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Figure 6 Land cover change analysis (2020–2024) showing spatial patterns of oil palm 
expansion, forest conversion, and ecosystem transitions in the Dumai coastal 
zone with quantified area changes for each land cover category. 

 
(19.5%), declining from 6,664 hectares to 
5,364 hectares, indicating the systematic 
removal of natural infrastructure that helps 
protect inland plantation areas from coastal 
flooding and saltwater intrusion (Hastuti et 
al. 2022). With a ratio of 2.13 million 
hectares versus 0.72 million hectares 
nationwide, industrial plantations have 
displaced more forest than smallholder 
plantings, which is consistent with larger 
trends seen throughout Southeast Asia. 

Nonetheless, the rate of growth in the 
Dumai region points to a concentration of 
industrial-scale development, which could 
be fuelled by existing infrastructure 
investments and advantageous agro-
climatic conditions (Obidzinski et al. 2012). 
When compared to Indonesia's larger 
forest conservation objectives and 
international climate commitments, this 
rate of deforestation raises serious 
environmental concerns. In addition to 
destroying important habitats for 
biodiversity, the conversion of primary and 
secondary forests to oil palm plantations 
drastically lowers the area's capacity to 
  

 
sequester carbon (Dislich et al. 2017). 
After a ten-year decline, recent data shows 
that palm oil deforestation has returned to 
Indonesia, with companies removing 
forests in 2023 for the second year in a row.    

The Dumai coastal zone may be a 
part of a larger resumption of forest 
conversion activities, according to this 
trend, which runs counter to earlier 
optimistic assessments of Indonesia's 
progress towards zero deforestation goals 
(Pacheco et al. 2017) With a loss of 1,300 
hectares (19.5%) from 6,664 hectares to 
5,364 hectares during the study period, the 
analysis shows especially alarming trends 
in the degradation of mangrove eco-
systems. Given the vital role mangroves 
play in protecting coastlines and assisting 
with climate adaptation, this decline is 
particularly noteworthy. Given that average 
shoreline change rates vary greatly among 
Indonesian coastal regions, mangroves 
are crucial in slowing down the rate of 
coastal erosion and lowering the coastal 
vulnerability index.
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Plantation Vulnerability Classification 
and Economic Risk 

The comprehensive vulnerability 
assessment (Figure 7) revealed that 2,847 
hectares of oil palm plantations, 
representing 64% of total coastal 
plantations in the study area, are classified 
as highly vulnerable to sea level rise 
impacts based on the integrated analysis 
of elevation, coastal proximity, substrate 
type, and plantation characteristics. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 Oil palm plantation vulnerability 

assessment showing spatial 
distribution of vulnerability 
classes, risk factors, and priority 
areas for climate adaptation 
measures in the Dumai coastal 
zone. 

 

These highly vulnerable plantations 
are predominantly located on peatland 
substrates within 2 kilometers of the 
coastline at elevations below 2 meters 
above sea level, where the combination of 
land subsidence and sea level rise creates 
compound risks that threaten plantation 
viability within the next two decades under 
current climate scenarios (Sumarga et al. 
2016). Similar hotspot patterns have been 
documented in Sabah, Malaysia, where 
low-lying peat palm plantations showed 
greater than 60% vulnerability by 2050 to 
moderate sea level scenarios. Tidal 
flooding, saltwater intrusion, and infra-
structure destabilisation are examples of 
coastal threats that are complex and have 
multiple components, as evidenced by the 
spatial concentration of high-risk areas 
(Temmerman et al. 2013). 

The highly vulnerable plantation 
tracts have an annual production value of 
about USD 12.3 million (BPS 2020), which 
is in line with the USD 4,300–5,200 ha⁻¹ 
regional palm oil revenue densities that 
were reported in Riau Province. In addition 
to crop losses, the analysis identified 89 
drainage pump stations, 145 km of access 
roads, and 15 processing mills located 
within the high-vulnerability zone. These 
resources support water management and 
logistical connectivity, but they are more 
likely to fail in the face of rising flood 
frequency and salinity stress (Nicholls and 
Cazenave 2010; Baugh et al. 2013). 
According to international esti-mates, if sea 
level rise is not stopped, up to 20% of 
Southeast Asia's coastal agricultural 
infrastructure may become unusable by 
the middle of the century, requiring 
multimillion-dollar replacement and 
downtime expenses (Neumann et al. 2015; 
Kulp and Strauss 2018). In order to protect 
production value and operational integrity, 
our findings support prioritizing adaptation 
investments in areas like coastal 
embankments, subsidence control, and the 
strategic relocation of vital facilities. 
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Climate Adaptation Implications 
The exceptionally strong negative 

correlation (r = -0.857) between sea level 
anomalies and oil palm plantation health 
represents one of the strongest 
documented climate-agricultural coupling 
relationships in tropical coastal environ-
ments, revealing the acute vulnerability of 
Indonesian oil palm systems to oceanic 
forcing (Lumban-Gaol et al. 2024). The 30-
day lag period identified through cross-
wavelet analysis provides critical insights 
into the temporal dynamics of environ-
mental impacts on oil palm systems, 
suggesting that plantation managers have 
approximately one month to implement 
adaptive responses following sea level 
anomalies before vegetation health 
indicators begin to deteriorate measurably. 

The primary mechanisms driving this 
strong coupling include saltwater intrusion 
into plantation drainage systems, which  
disrupts the carefully managed hydrology 
essential for oil palm cultivation on 
peatland substrates (Hooijer et al. 2012). 
Oil palm trees are particularly sensitive to 
soil salinity, with productivity declining 
significantly when electrical conductivity 
exceeds 4 dS/m, a threshold frequently 
exceeded during tidal flooding events in 
coastal plantation areas (Sumarga et al. 
2016). The 30-day early warning potential 
identified through cross-wavelet analysis 
could enable plantation managers to 
implement proactive measures including 
temporary drainage adjustments, pro-
tective flooding of vulnerable areas, and 
strategic harvest timing to minimize 
productivity losses during periods of 
elevated sea level risk.  

The vulnerability patterns docu-
mented in Dumai City likely represent 
conditions across Indonesia's coastal oil 
palm regions, where similar combinations 
of peatland substrates, low elevation, and 
sea level rise exposure create widespread 
vulnerability to climate impacts (Gaveau et 
al. 2019). If the 64% high vulnerability rate 
observed in Dumai is representative of 
other coastal plantation areas, approxi-
mately 2.4 million hectares of Indonesia's 

oil palm cultivation could face similar risks, 
potentially threatening 15% of global palm 
oil production and creating significant 
implications for international commodity 
markets and food security. 

 
CONCLUSION 

 
This study provides several key 

findings regarding sea level rise impacts on 
Indonesian coastal oil palm plantations: 

 
1. Strong Climate-Agricultural Coupl-

ing: The analysis revealed an 
exceptionally strong negative correla-
tion (r = -0.857) between sea level 
variability and plantation health, with a 
30-day lag period that provides valuable 
early warning potential for adaptive 
management interventions. 

2. Systematic Vegetation Decline: 
Significant NDVI decline of -0.072 year⁻¹ 
was observed across coastal planta-
tions, indicating systematic environ-
mental stress that threatens productivity 
and economic viability, with plantation 
health deteriorating from optimal 
conditions in 2020 (mean NDVI: 0.608) 
to critical levels by 2024 (mean NDVI: 
0.335). 

3. High Vulnerability Assessment: The 
vulnerability assessment identified 
2,847 hectares (64%) of coastal oil palm 
plantations as highly vulnerable to sea 
level rise impacts, representing approxi-
mately USD 12.3 million in annual 
production value at risk from climate 
change effects. 

4. Geographic Risk Concentration: 
Vulnerable plantations are predomi-
nantly located on peatland substrates 
within 5 kilometers of the coastline at 
elevations below 3 meters above sea 
level, where the combination of ongoing 
peat subsidence and accelerating sea 
level rise creates compound risks. 

5. Methodological Contribution: This 
study establishes the first comprehen-
sive, multi-sensor satellite assessment 
framework for vulnerability evaluation, 
providing a replicable methodology 
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applicable to other coastal plantation 
regions and supporting evidence-based 
adaptation planning. 

6. Future Implications: The findings 
demonstrate urgent need for integrated 
coastal management strategies that 
address both agricultural sustainability 
and environmental protection, with the 
30-day early warning potential offering 
valuable lead time for implementing 
protective measures and adaptive 
management responses 
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ABSTRACT 

Palm oil adulteration poses significant health and economic risks, necessitating accurate 
detection methods. This study develops a machine learning framework combining KNN, SVM, 
and Random Forest via weighted model averaging to analyze synthetic FTIR spectra simulating 
pure and adulterated palm oil. SVM emerged as the top performer (97.3% accuracy), 
significantly outperforming Random Forest (86.9%) and KNN (85.9%). Principal Component 
Analysis revealed distinct clustering, with PC1 (63.3% variance) strongly correlate with key 
adulteration markers like ester C=O (1745 cm⁻¹) and OH (3300 cm⁻¹) vibrations. Spectral 

segmentation identified the 1000–1100 cm⁻¹ region (C-O stretches) as most critical for 
detection, enabling a proposed two-stage screening protocol that reduces analysis time by 60% 
while maintaining >90% accuracy for 5% adulterant concentrations. The synthetic dataset, 
validated against experimental references, replicated physicochemical trends, including peak 
broadening in oxidized samples (+20% FWHM) and dye-specific N=O peaks (1520 cm⁻¹). 
Model averaging enhanced stability, reducing performance variability to 1.2% versus 3.5–4.8% 
for individual models. These results highlight SVM’s superiority in handling high-dimensional 
spectral data and non-linear patterns, while the methodological advances—including noise 
modeling (SNR = 40 dB) and feature selection—offer practical solutions for portable FTIR 
devices. The framework supports real-time adulteration screening in resource-limited settings, 
with implications for food safety regulation and IoT-based quality monitoring in global palm oil 
supply chains. 

 
Keywords: Ensemble learning, machine learning, model averaging, palm oil adulteration, 

simulated data

INTRODUCTION 

Palm oil is a strategic commodity for 
Indonesia, playing a crucial role in national 
food security and the global economy. In 
recent years, however, the issue of 
adulteration—intentional tampering of 
palm oil with hazardous substances—has 
emerged as a serious threat to food safety. 
According to data from the Indonesian 
Food and Drug Authority (BPOM) in 2023, 
approximately 28% of palm oil samples 

collected from traditional markets showed 
signs of adulteration with harmful 
substances such as used cooking oil, 
Rhodamine B textile dyes, and organic 
solvents. This issue is not confined to 
Indonesia alone; the European Food 
Safety Authority (EFSA) has reported that 
around 15% of products containing palm 
oil in European markets fail to meet purity 
standards, indicating the global scale of 
the problem. The health implications of 
adulterated palm oil are particularly 
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alarming. A study by Universitas Indonesia 
(2022) revealed that consuming palm oil 
contaminated with used cooking oil 
increases the risk of cardiovascular 
disease by up to 40%, due to the presence 
of trans fatty acids and carcinogenic 
peroxides. Moreover, synthetic dyes such 
as Methanil Yellow, commonly used to 
enhance the color of low-quality palm oil, 
have been proven to cause liver and 
kidney damage, as demonstrated by 
toxicological studies conducted at IPB 
University (Ahmad et al. 2021). 

Economically, adulteration inflicts 
considerable damage on the palm oil 
industry. The Indonesian Palm Oil 
Producers Association (APROBI) 
estimates that annual losses amount to 
IDR 3.5 trillion due to product quality 
degradation and declining international 
consumer trust. The situation is further 
exacerbated by inadequate field 
surveillance. Data from the Ministry of 
Trade indicate that only 35% of traditional 
markets in Indonesia are equipped with 
rapid testing tools for adulteration 
detection. While conventional analytical 
techniques such as gas chromatography-
mass spectrometry (GC-MS) and high 
performance liquid chromatography 
(HPLC) are highly accurate, they are costly 
(IDR 2–5 million per test), time-consuming 
(4–8 hours per sample), and require skilled 
personnel (Suryanto et al. 2022). 

In this context, Fourier-Transform 
Infrared (FTIR) Spectroscopy emerges as 
a promising alternative due to its rapid 
(less than five minutes), non-destructive, 
and cost-effective analysis approxi-
mately IDR 50,000–100,000 per sample). 
FTIR works by detecting molecular 
vibrations that produce specific absorption 
patterns for each compound. However, 
manual interpretation of FTIR spectra 
presents several critical limitations. First, 
there is significant spectral overlap 
between authentic palm oil and 
adulterants, such as the C=O ester peak at 
1745 cm⁻¹ overlapping with the carboxylic 

acid C=O peak at 1710 cm⁻¹. Second, 

baseline variation caused by scattering 
effects impedes quantitative analysis. 
Third, the technique is less sensitive to 
low-level adulteration (<3%) due to 
instrument resolution constraints (Rohman 
& Windarsih 2023; Zhang et al. 2022). 

Recent advances in analytical 
spectroscopy have highlighted the 
potential of machine learning (ML) 
approaches to overcome these 
challenges. Prior studies have applied 
various ML algorithms to FTIR spectral 
analysis with promising results. For 
example, de Santana et al. (2019) 
successfully applied Support Vector 
Machines (SVM) to detect olive oil 
adulteration with an accuracy of 89%, 
while Li et al. (2021) developed a 
Convolutional Neural Network (CNN) 
model that achieved 92% accuracy in 
identifying adulterated palm oil. 
Nonetheless, these studies face persistent 
limitations, including the scarcity of publicly 
available FTIR datasets (e.g. the NIST 
2023 database contains only ~200 
adulterated palm oil spectra), model 
overfitting due to spectral variations across 
instruments, and the high computational 
burden of processing high-resolution 
spectra comprising thousands of data 
points (Wang et al. 2023). 

To address these limitations, this 
study proposes a novel framework 
incorporating model averaging ensemble 
learning as a core solution. The model 
averaging strategy combines the predictive 
strengths of three machine learning 
algorithms—K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), and 
Random Forest (RF)—through weighted 
probability averaging, where each base 
model contributes based on its cross-
validation performance. This approach 
offers three main advantages: (1) reducing 
individual model bias through weighted 
voting; (2) enhancing prediction stability 
against spectral noise; and (3) providing 
uncertainty estimates via the joint 
probability distribution. The implementa-
tion of model averaging involves three key

stages: first, independent optimization of each base learner; second, determination 
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of combination weights based on 
validation accuracy; and third, integration 
of probabilistic predictions using a softmax 
function. Preliminary experiments using 
500 simulated FTIR spectra demonstrated 
a significant increase in classification 
accuracy from 82% (best single model) to 
94%, with a false positive rate below 3%. 
Furthermore, model averaging achieved 
greater consistency, with a standard 
deviation of only 1.2% across 50 cross-
validation runs, compared to 3.5–4.8% for 
individual models. 

To further mitigate data limitations, 
this study also constructs a synthetic FTIR 
spectral dataset using empirically derived 
spectroscopic parameters. Additionally, a 
segmentation-based preprocessing 
strategy is applied, focusing on key 
spectral regions (e.g. 1745 cm⁻¹, 1160 
cm⁻¹, and 2925 cm⁻¹) to reduce noise and 
computational complexity. These 
innovations not only enhance classification 
performance but also improve model 
interpretability. Ultimately, this research 
aims to contribute to the development of 
an accurate, robust, and scalable 
detection system for palm oil adulteration. 
The proposed   framework   holds   strong 
potential for real-time implementation in 
traditional markets through Internet of 
Things (IoT) integration and supports 
national food safety programs, including 
the Ministry of Health’s School Children 
Snack Food Safety Initiative (PJAS). By 
strengthening both technological and 
operational aspects of adulteration 

detection, this study seeks to safeguard 
public health and maintain the global 
competitiveness of Indonesian palm oil. 

MATERIALS AND METHODS 

The synthetic FTIR spectra were 
systematically generated to replicate the 
characteristic absorption patterns of pure 
and adulterated palm oil samples. Each 
spectrum was constructed as a 
superposition of Gaussian peaks 
representing key functional groups, with 
parameters carefully calibrated against 
experimental references from the NIST 
Chemistry WebBook and published 
spectroscopic studies. The simulation 
incorporated four distinct classes: (1) pure 
palm oil, (2) palm oil mixed with 5% used 
cooking oil, (3) palm oil mixed with 5% 
synthetic dye, and (4) palm oil mixed with 
5% water.  

The FTIR spectral simulation was 
meticulously designed to replicate 
authentic measurement conditions through 
several key technical implementations. 
Class specific spectral modifications were 
systematically incorporated, with each 
adulterant type exhibiting distinct 
vibrational signatures: used oil samples 
showed marked intensity increases in acid 
C=O stretching (1700–1715 cm⁻¹, +700%) 
and oxidized C-O vibrations (1140–1160 
cm⁻¹), while synthetic dye adulteration 
introduced characteristic N=O (1510–1530 
cm⁻¹) and C=N (1610–1630 cm⁻¹) peaks. 
Water contamination produced the most 
dramatic spectral changes, generating  

Table 1 Characteristic FTIR Functional Groups for Palm Oil Adulteration Detection 

Functional 
Group 

Region 
(cm⁻¹) 

Characteristic Notes Reference 

Ester C=O 
stretch 

1735–1750 Dominant peak in pure palm oil, 
decreases in adulterated 
samples 

Rohman & Che 
Man (2012) 
 

Acid C=O 
stretch 

1700–1715 Marker for oxidation/used oil, 
increases significantly (>700%) 
in adulterated samples 

Syahir et al. (2020) 
 

CH₂ 
scissoring 

1460–1470 Aliphatic chain marker, slight 
intensity variations across 
classes 

Silverstein et al. 
(2014) 
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broad OH stretching bands (3200–3600 
cm⁻¹) with intensity enhancements 
exceeding 100-fold, accompanied by the 
distinctive water bending vibration at 1640 
cm⁻¹. To ensure spectroscopic realism, the 
simulation incorporated multiple noise and 
variability factors: baseline artifacts were 
modeled using second-order polynomials 
with random coefficients (R² = 0.85–0.98), 
while additive white noise at SNR = 40 dB 
with sporadic spike artifacts (0.5% 
occurrence) replicated instrumental 
limitations. The simulation accounted for 
peak broadening phenomena, particularly 
for oxidized components which exhibited 
15–20% wider FWHM values compared to 
pure oil references. Parameter variability 
followed normal distributions (μ±σ) with 
controlled correlations-peak widths 
showed significant positive correlation with 
oxidation degree (r = 0.72, p<0.01), while 
baseline effects intensified characteris-
tically in the high-wavenumber region 
(3000–4000 cm⁻¹).  

The final dataset comprised 1,000 
synthetic spectra (250 per adulteration 
class) spanning 400–4000 cm⁻¹ at 2.12 
cm⁻¹ resolution (1,700 data points per 
spectrum), achieving complete spectral 
representation with computational 
efficiency (12 ms generation time per 
spectrum on standard hardware). This 
balanced dataset successfully captured the 
essential spectroscopic fingerprints of palm 
oil adulteration while maintaining controlled, 
physiochemically meaningful variability, 
crucial for developing robust machine 
learning models capable of handling real-
world spectral variations and instrumental 
artifacts. The simulation parameters were 
rigorously validated against experimental 
reference data from NIST and published 
spectroscopic studies to ensure physical 
accuracy. 

Model Development 
The machine learning framework 

incorporated three distinct classification 
algorithms, each selected for their 
complementary strengths in handling 
spectroscopic data. The K-Nearest Neigh-
bors (KNN) algorithm (Cover and Hart 1967) 

implemented a cosine similarity—based 
voting system among k = 5 nearest 
neighbors, optimized through elbow method 
analysis. Support Vector Machines (SVM) 
(Cortes and Vapnik 1995) employed an RBF 
kernel with C = 1.0, maximizing the 
hyperplane margin through grid search 
optimization. Random Forest (Breiman 
2001) utilized an ensemble of 100 decision 
trees with unlimited depth, employing 
bootstrap aggregation to enhance predictive 
stability. Model hyperparameters were 
systematically optimized using Bayesian 
optimization techniques, balancing 
computational efficiency with performance 
maximization. The ensemble strategy 
employed weighted probability averaging to 
combine predictions from all three base 
models. Weight assignments were 
dynamically calculated based on 5-fold 
cross-validation accuracy scores, ensuring 
optimal contribution from each classifier. This 
approach mathematically combined the 
probabilistic outputs as 𝑃𝑎𝑣𝑔(𝑦|𝑥) = 𝛴 𝑤𝑚 
𝑃𝑚(𝑦|𝑥), where weights were normalized 
through the relation. The weighting 
mechanism automati-cally emphasized more 
accurate models while maintaining the 
diversity benefits of ensemble learning. 
 
Comprehensive Analytical Workflow  

The experimental protocol followed a 
rigorous seven-stage process: (1) stratified 
data partitioning (70:30 ratio for training, and 
testing sets); (2) feature subset evaluation 
across 17 spectral regions; (3) weighted 
model averaging implementation; (4) multi-
metric performance assessment (including 
macro-averaged precision, recall, and F1-
scores). This robust validation framework 
ensured reliable performance estimation 
while maintaining biological relevance 
through comparison with experimental 
results.  

RESULTS AND DISCUSSION 

Spectral Signature Characterization 
  The PCA results revealed distinct 
clustering patterns among the four oil 
classes, with PC1 accounting for 63.3% of 
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total variance-significantly higher than PC2 
(2.1%) and PC3 (6.3%). Pure palm oil 
samples formed a tight cluster in the 
negative PC1 region (-50 to -100), 
demonstrating spectral consistency. 
Adulterated samples showed progressive 
dispersion along PC1: used oil mixtures 
occupied the -50 to 0 range, synthetic dye 
samples appeared between 0–50, and 
water-adulterated oils clustered in the 50- 
100 region. This clear separation along the 
first principal component suggests that 
major adulteration-induced spectral 
changes are captured by variations in ester 
C=O (1745 cm⁻¹) and OH (3300 cm⁻¹) 
vibrations, which dominate the PC1 
loading plot (not shown). The minimal 
variance explained by PC2/PC3 indicates 
these components primarily capture noise 
and baseline artifacts rather than 
chemically meaningful variations.  

The stacked FTIR spectra exhibited 
three diagnostically important regions: 

1. Carbonyl Region (1700–1750 cm⁻¹): 
Pure oil showed a dominant ester C=O 
peak at 1745 cm⁻¹ (A = 0.90±0.02) that 
decreased by 5–7% in adulterated 
samples. Used oil displayed a 
characteristic shoulder at 1710 cm⁻¹ (A 
= 0.08±0.01) from acid C=O groups. 

2. Dye Marker Region (1500–1650 cm⁻¹): 
Synthetic dye adulteration introduced 
two new peaks at 1520 cm⁻¹ (N=O) and 

1620 cm⁻¹ (C=N), absent in other 
samples. 

3. Hydroxyl Region (3000–3600 cm⁻¹): 
Water adulteration caused a broad OH 
stretch (A = 0.12±0.02) with 120× 
 

intensity increase versus pure oil, while 
used oil showed minor OH broadening 
from oxidation products. 

The spectral changes correlate 
strongly with PCA clustering patterns—

PC1 values increased proportionally with 
OH band intensity (R² = 0.91) and inversely 
with ester C=O intensity (R² = 0.85). This 
confirms that our simulation successfully 
captured the key physicochemical 
differences between adulteration types 
while maintaining realistic spectral noise 
characteristics. The 2.12 cm⁻¹ resolution 
allowed clear discrimination of closely 
spaced peaks (e.g., 1710 vs 1745 cm⁻¹), 
which would be critical for real-world 
detection of low-concentration adulterants 
(<5%). 

The clear separation in PCA space 
(Figure 1) suggests excellent potential for 
machine learning classification, particularly 
for water adulteration which showed the 
most distinct spectral and PCA signatures. 
However, the partial overlap between used 
oil and synthetic dye samples along PC2 
indicates these classes may require more 
sophisticated spectral preprocessing or 
feature selection. The preserved peak 
shapes and positions in Figure 2 validate 
our Gaussian simulation parameters 
against experimental references, 
particularly for the: 

1. Ester peak width (FWHM = 15±1 cm⁻¹ 
vs literature 14–16 cm⁻¹) 

2. Water OH band shape (asymmetric 
broadening toward 3000 cm⁻¹) 

3. Dye peak ratios (N=O/C=N intensity 
ratio = 1.25±0.15) 

 
 
 
 
 
 
 
 
 
 
 

Figure 1 PCA Visualization plot 

 
 
 
 
 
 
 
 
 

 
 
 
Figure 2 Average FTIR Spectra plot
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These results demonstrate that our 
synthetic dataset maintains sufficient 
physicochemical fidelity for developing 
adulteration detection algorithms while 
providing controlled variability for robust 
model training. The next section will 
quantify how these spectral differences 
translate to actual classification 
performance across different machine 
learning approaches. 

Model Averaging (KNN, SVM, RF) 
The comprehensive analysis of 

machine learning model performance 
across FTIR spectral subsets reveals 
several critical insights for palm oil 
adulteration detection. As shown in the 
visualization, all three models (KNN, SVM, 
and Random Forest) exhibit distinct 
performance patterns that correlate 
strongly with specific spectral regions. The 
SVM classifier demonstrates superior 
performance with peak accuracy reaching 
0.9 in subset 5, corresponding to the 1000–
1100 cm⁻¹ region that contains 
characteristic C-O ester stretching 
vibrations—a key molecular fingerprint of 
palm oil quality. This region's exceptional 
discriminative power likely stems from its 
sensitivity to chemical alterations caused 
by common adulterants like used cooking 
oil, synthetic dyes, or water. The Random 
Forest algorithm shows more consistent 
intermediate performance (0.45–0.88) 
across subsets, suggesting greater 
robustness to spectral variations, while 
KNN displays the highest variability (0.22– 
0.85), indicating stronger dependence on 

optimal feature selection. Notably, three 
spectral regions (subsets 3, 6, and 13, 
potentially containing C=O stretches at 
1745 cm⁻¹, CH₂ deformations at 1465 
cm⁻¹, and C-O stretches at 1170 cm⁻¹) 
maintain moderate accuracy (0.4–0.6) 
across all models, serving as reliable 
secondary markers. The poorest 
performance in subsets 0–2 and 7–9 (likely 
representing the fingerprint region below 
1000 cm⁻¹) confirms this area's limited 
chemical specificity for adulteration 
detection. These findings have significant 
practical implications: (1) they validate 
SVM as the optimal algorithm for handheld 
FTIR adulteration detectors due to its 
combination of high peak accuracy and 
chemical interpretability, (2) they identify 
1000–1100 cm⁻¹ as the most critical 
spectral window for rapid screening, 
enabling potential hardware optimizations 
in portable devices, and (3) they 
demonstrate how strategic feature 
selection can reduce computational 
requirements by up to 80% (focusing on 
just 5 key subsets) without sacrificing 
detection accuracy.  

The consistent alignment between 
model performance patterns and known 
FTIR biomarkers of oil degradation 
(increased acid C=O at 1710 cm⁻¹) and 

adulteration (N=O stretches at 1520 cm⁻¹ 
from dyes, broad OH bands from water) 
further confirms the simulation's 
physicochemical validity and suggests 
these machine learning approaches are 
capturing scientifically meaningful spectral 
patterns rather than artifacts.  For industrial

  
 
 
 
 

 
 
 
 
 

 
 

 

 

Figure 3 Average FTIR Spectra plot 
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applications, these results recommend a 
two-stage detection protocol: initial rapid 
screening using only subset 5 features with 
SVM, followed by confirmatory analysis 
incorporating subsets 3, 6, and 13 when 
borderline results occur. This approach 
could reduce analysis time by 60% while 
maintaining over 90% detection accuracy 
for common adulterants at concentrations 
as low as 5%. 

The comparative analysis of model 
performance reveals that Support Vector 
Machine (SVM) consistently outperforms 
both Random Forest and K-Nearest 
Neighbors (KNN) in the classification of 
FTIR spectral data. SVM achieves an 
outstanding average balanced accuracy of 
0.973 with a standard deviation of only 
±0.010, indicating not only superior 
accuracy but also exceptional consistency. 
This result significantly surpasses the 
performance of Random Forest (0.869± 
0.032) and KNN (0.859±0.023), marking an 
absolute performance advantage of 
approximately 10–11%. The strong margin 
suggests that SVM is particularly well-
suited for this task, likely due to its 
capability in capturing complex, non-linear 
decision boundaries inherent in high-
dimensional spectral data. 

Further exploration of consistency 
across iterations supports this conclusion. 
SVM exhibits minimal variation, with all 
iteration scores ranging between 0.943 and 
0.993 (range = 0.050), reinforcing its 
robustness across various subsets of the 
data. In contrast, Random Forest shows a 
wider performance spread, ranging from 
0.797 to 0.937 (range = 0.140), suggesting 
that its output is more sensitive to data 
variations and potentially noise. Although 
KNN’s overall accuracy is slightly lower, it 
displays relatively stable behavior (range = 
0.817–0.917; std = 0.023), positioning it as 
the most stable among non-SVM models. 

Insights from statistical distribution 
further confirm these findings. The boxplot 
visualization highlights SVM’s tight 
interquartile range (Q1 = 0.968, Q3 = 
0.980), underscoring the model's reliability 
and consistent high performance. Random 

Forest and KNN exhibit broader 
interquartile ranges (IQR = 0.037 and IQR 
= 0.034, respectively), indicating greater 
variability in their predictive outcomes. 
Nonetheless, both ensemble-based 
methods—SVM and Random Forest—
achieve higher maximum accuracies than 
KNN, affirming their superior learning 
capabilities. 

From a practical standpoint, SVM 
emerges as the optimal choice for 
applications that demand high reliability, 
particularly where balanced accuracy 
exceeding 95% is critical—such as in 
quality control, medical diagnostics, or food 
safety surveillance. Meanwhile, Random 
Forest may be considered in contexts 
where interpretability of results and feature 
importance are essential, offering enable 
accuracy while providing transparency into 
variable contributions. Although KNN ranks 
lowest in accuracy, its simplicity and 
computational efficiency may still render it 
suitable in resource-constrained or real-
time settings. 

The observed 11% performance gap 
between SVM and the other models implies 
that the classification problem involves 
non-linear and complex decision 
boundaries, which SVM is inherently 
designed to handle. The results suggest 
that the FTIR spectral data is well- 
separated in a high-dimensional feature 
space, a scenario where SVM excels. In 
contrast, the comparable performances of 
Random Forest and KNN indicate that local 
proximity-based decisions, while effective 
to some extent, may not fully capture the 
global spectral patterns critical for accurate 
classification. 

Areas for potential improvement have 
also been identified. The high performance 
of SVM may be attributed to its robustness 
in handling high-dimensional data, 
particularly when using an RBF kernel, 
which is well-suited for modeling non-linear 
spectral patterns. Further investigations 
could explore the impact of kernel choice 
and hyperparameter tuning. For Random 
Forest, increasing tree depth or 
incorporating targeted feature selection 
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Figure 4 Model Summary 

 
strategies may help reduce model variance 
and improve predictive performance. 
Meanwhile, KNN could benefit from 
experimenting with alternative distance 
metrics or applying weighted voting 
schemes to better capture feature 
relevance. In summary, the results clearly 
validate SVM as the most effective 
algorithm for this specific spectral 
classification task, demonstrating superior 
accuracy, robustness, and reliability across 
multiple iterations. These findings align 
with theoretical expectations, reinforcing 
the notion that SVMs are particularly adept 
at pattern recognition in high-dimensional 
domains such as FTIR spectroscopy. 

 
CONCLUSION 

This study demonstrates that SVM 
outperforms Random Forest and KNN in 
detecting palm oil adulteration via FTIR 
spectroscopy, achieving superior accuracy 
(0.973 ± 0.010) and robustness. The model 
averaging approach successfully combines 
the strengths of multiple algorithms, while 
spectral analysis identifies 1000–1100 cm⁻¹ 
as the most discriminative region. These 
findings enable rapid, reliable adulteration 
screening, supporting food safety initiatives 
and industrial quality control. 
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ABSTRACT 

Palm oil, a native crop of West Africa, emerged as a key industrial commodity in the 19th 

century, fundamentally shaping economic and environmental landscapes in both Europe and 
Southeast Asia. While its importance in European industrialization has been widely 
acknowledged, the early colonial expansion of oil palm cultivation in Indonesia and its impact on 
deforestation remains less discussed. This paper explores the intertwined economic, political, 
and environmental dimensions of palm oil trade in Europe post-1800 and the early plantation-
based land conversion in Indonesia before 1945. Drawing on archival sources, historical records, 
and academic studies, it highlights the dual role of palm oil as both an enabler of industrial 
progress and a driver of ecological transformation. 

Keywords: Colonial Indonesia, deforestation, Europe, industrial revolution, palm oil trade

INTRODUCTION 

In recent decades, the European 
Union has increasingly criticized oil palm 
cultivation for its role in tropical defo-
restation, citing environmental concerns in 
regulations such as the Renewable Energy 
Directive (RED) and the EU Deforestation 
Regulation (EUDR). Ironically, it was 
European industrial and colonial interests 
that first globalized palm oil and promoted 
its cultivation on a large scale.  

The transformation of palm oil from a 
regional West African product into a 
globally traded commodity began in the 
19th century, driven by European demand 
for industrial lubricants, soap, and candles 
(Lynn 1997; Martin 1988). In Southeast 
Asia, particularly in colonial Indonesia, 
systematic plantation development was  

 
initiated by Dutch and Belgian entre-
preneurs in the early 20th century. This dual 
trajectory—industrial consumption in 
Europe and plantation expansion in 
Indonesia—underscores the historical 
roots of palm oil’s economic significance 
and ecological consequences. 

The objectives of this study are to 
examine the role of palm oil in the 
European industrial economy during the 
19th century; analyze the historical 
processes that led to the establishment of 
oil palm plantations in colonial Indonesia 
before 1945; assess the early environ-
mental implications, particularly deforesta-
tion, linked to plantation expansion in 
Indonesia; and provide a comparative 
perspective on how European demand and 
colonial land-use policies intertwined to 
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shape the global palm oil industry. 
 

MATERIALS AND METHODS 
 
This study employs a qualitative 

historical research approach. Data were 
obtained from archival sources, such as 
colonial records, company documents, and 
trade statistics; secondary literature, 
including academic monographs 
(Hobsbawm 1968, Stoler 1985, Cramb & 
McCarthy 2016), journal articles, and 
economic histories; and comparative 
analysis of European industrial trajectories 
and colonial land-use transformations. The 
research method integrates historiography 
and comparative economic analysis to 
reconstruct the dual narratives of palm oil 
development in Europe and Indonesia. 

 
RESULTS AND DISCUSSION 

 
Palm Oil in the European Industrial 
Economy (1800–1900) 

The Industrial Revolution in Britain 
created unprecedented demand for indus-
trial lubricants, soap, and candles, where 
palm oil found strategic use (Hobsbawm 
1968, Lynn 1997). By 1830, Liverpool had 
become the hub of palm oil imports. 
Following the abolition of the slave trade in 
1807, palm oil exports became central to 
“legitimate commerce” in West Africa 
(Martin 1988, Falola & Genova 2005). 

European trading companies, such as 
the Royal Niger Company, expanded their 
commercial networks, embedding palm oil 
into imperial commerce (Akindele 2017). 
By the late 19th century, imports of palm oil 
into Europe had increased tenfold, 
supplying industries in Britain, France, the 
Netherlands, and Germany (Kiple & 
Ornelas 2000). 
 
Palm Oil and Deforestation in Colonial 
Indonesia (1848–1945) 

Oil palm was first introduced to 
Indonesia in 1848 through the Bogor 
Botanical Gardens (Boomgaard 1996, 
Drayton 2000). Initial cultivation remained 
limited until 1911, when Belgian entre-

preneurs Adrien Hallet and Henri 
Fauconnier established the first com-
mercial estates near Medan (Stoler 1985). 
Between 1911 and the 1940s, plantations 
expanded across eastern Sumatra under 
companies such as Socfin, leading to the 
conversion of tropical forests into 
monoculture estates (Potts 1990, Cramb & 
McCarthy 2016). Dutch colonial policies 
classified forests as “idle land,” legitimizing 
deforestation for plantation agriculture 
(Boomgaard 1996). Indigenous commu-
nities were either displaced or integrated as 
contract laborers under exploitative 
systems (Stoler 1985). 

Table 1 shows comparative historical 
trajectories of palm oil between Europe 
(post-1800) and colonial Indonesia (pre-
1945), highlighting differences in industrial 
drivers, key actors, land-use impacts, labor 
dynamics, and socio-political legacies. 
While Europe integrated palm oil into 
industrial supply chains without direct land-
use change, Indonesia experienced large-
scale deforestation and the establishment 
of plantation systems that laid the 
foundation for post-1970s expansion. Table 
2 shows quantitative indicators of palm oil 
development in Europe and colonial 
Indonesia, in 1800–1945. The data 
illustrate the asymmetry between Europe’s 
industrial consumption (driven by imports) 
and Indonesia’s plantation-based 
production (driven by deforestation and 
labor exploitation). 

The results highlight a dual but 
interconnected trajectory. In Europe, palm 
oil enabled industrialization, replacing 
whale oil, and serving as a substitute after 
the abolition of slavery. Its industrial uses 
embedded palm oil into consumer culture, 
from soap and candles to margarine, 
making it a vital commodity in European 
markets (Richardson 1992). In Indonesia, 
colonial authorities and European 
companies transformed landscapes 
through plantation agriculture. Although the 
pre-1945 expansion was less extensive 
than the massive growth post-1970s, it 
established crucial ecological precedents: 
monoculture cultivation, large-scale land 
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Table 1 Comparative historical trajectories of palm oil in Europe (post-1800) and 
Indonesia (pre-1945) 

Aspect Europe (Post-1800) Indonesia (Pre-1945) 

Timeline 1800s: Palm oil replaces whale 
oil;  
1830s: Liverpool becomes import 
hub;  
1869: Margarine invented;  
1900s: Europe fully industrialized 
with palm oil inputs 

1848: First oil palm introduced 
to Bogor; 

1911: Hallet & Fauconnier 
establish first estates near 
Medan;  
1910s–1940s: Expansion 
across Sumatra under Socfin 
and Dutch concessions 

Primary Driver Industrial revolution (lubricants, 
soap, candles, margarine); 
abolition of slave trade 

Colonial plantation economy, 
export orientation, integration 
into global markets 

Key Actors British trading firms (Royal Niger 
Company, UAC); soap and 
candle industries (Lever 
Brothers/ Unilever); European 
merchants 

Dutch colonial government; 
Belgian entrepreneurs (Hallet 
& Fauconnier); plantation 
companies (Socfin) 

Land Use Impact No direct land-use change in 
Europe; indirect stimulation of 
African smallholder production 

Large-scale conversion of 
tropical rainforests in Sumatra 
into monoculture plantations 

Economic Logic Shift from slave trade to 
“legitimate commerce”; integra-
tion into industrial supply chains 

Framing forests as “idle land”; 
transformation into cash-crop 
estates for export revenue 

Labor Dynamics Reliance on African smallholder 
producers and coastal inter-
mediaries 

Displacement of indigenous 
populations; recruitment of 
Javanese contract laborers 
and local workers 

Scale/Extent Palm oil imports to Europe 
increased tenfold by late 19th 
century (Lynn 1997) 

By 1940, >250,000 ha of 
plantations established in 
Sumatra (Stoler 1985, Cramb 
& McCarthy 2016) 

Environmental 
Consequences 

Minimal direct impact in Europe; 
indirect pressure on West African 
ecosystems 

Early deforestation, biodiver-
sity loss, soil degradation; 
ecological precedent for post-
1970s expansion 

Socio-political 
Dimension 

Driven by European industrial 
policies and mercantile 
capitalism 

Institutionalized by Dutch 
agrarian laws and concession 
system; consolidation of 
plantation belt 

Legacy Embedded in European con-
sumer products and global trade 
networks 

Established plantation model in 
Indonesia; foundation for 
Indonesia’s dominance in 
global palm oil 
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conversion, and displacement of 
indigenous land-use systems. A compa-
rative perspective reveals asymmetry: 
Europe consumed palm oil without 
bearing direct land-use costs, while 
colonial Indonesia bore the ecological 
and social burden of deforestation. This 
reflects the colonial logic of “productive 
land”, where forests were redefined as 
idle resources awaiting transformation 
into economic assets (Bisschop 2012). 
By 1940, Indonesia had become a 
significant exporter of palm oil, supplying 
global markets that had once relied 
almost exclusively on West Africa 

(Corley & Tinker, 2016). This historical 
shift set the stage for Indonesia’s 
dominance in the industry, but also 
embedded structural challenges—
monoculture risks, ecological 
vulnerability, and labor exploitation—that 
continue to shape sustainability debates 
today. These intertwined histories 
complicate current European critiques of 
palm oil. Understanding that Europe 
once depended heavily on palm oil, and 
actively promoted its colonial expansion, 
provides historical balance to contem-
porary sustainability debates under 
frameworks like RED and EUDR. 

 
Table 2 Quantitative indicators of palm oil development in Europe and colonial Indonesia 

(1800–1945) 

Indicator Europe (Post-1800) Indonesia (Pre-1945) Sources 

Palm oil 
imports / 
exports 

By 1850, ~30,000 tons 
annually imported into 
Britain; by 1900, 
>250,000 tons into 
Europe (tenfold increa-
se) 

By 1940, Indonesia 
exported ~250,000–
300,000 tons of crude 
palm oil annually 
(mainly from Sumatra 
estates) 

Lynn 1997; 

Stoler 1985 

Cultivated area Not applicable (Europe 
had no plantations; relied 
on imports from Africa 
and colonies) 

1911: first estates esta-
blished near Medan; by 
1939, ~250,000 hec-
tares of plantations in 
Sumatra 

Boomgaard 
1996;  

Cramb & 
McCarthy 
2016 

Labor force Trade intermediaries and 
African smallholders 
dominated supply chains 

Tens of thousands of 
Javanese and local 
workers recruited under 
colonial “contract 
coolie” system 

Stoler 1985; 
Cramb & 
McCarthy 
2016 

Industrial use Soap, candles, marga-
rine, lubricants; integral 
to industrial and con-
sumer economies 

Primarily crude oil 
exports for European 
processing; limited local 
downstream industries 

Hobsbawm 
1968; 
Richardson 
1992 

Environmental 
impact 

Indirect: pressure on 
West African ecosystems 
but no direct European 
deforestation 

Direct: widespread 
rainforest clearance in 
Sumatra; biodiversity 
loss and soil degra-
dation 

Boomgaard 
1996;  

Potts 1990 
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CONCLUSION 
 

Palm oil’s trajectory from 1800 to 
1945 reflects both industrial progress in 
Europe and ecological transformation in 
Indonesia. In Europe, it was central to the 
Industrial Revolution and consumer 
goods, while in Indonesia, it catalyzed 
deforestation and plantation-based 
economies under colonial rule. Recog-
nizing this shared history offers important 
lessons for present-day debates on 
sustainability, deforestation, and the 
future of the palm oil industry. 
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of soil preparation, inorganic and organic 

safety, oleochemicals, downstream 

industry development, supply chain, and 

market studies.  

The published articles can be in the 

form of research articles, review paper or 

short communications which have not 

been published previously in other 

journals (except in the form of an abstract 

or academic thesis/dissertation or 

presented in seminar/conference).  
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TYPES OF MANUSCRIPT  

Research article  

A research article is an original full 

length research paper which should not 

exceed 5000 words in length (including 

table and figures in good resolution). 

Research article should be prepared 

according to the following order: title, 

authors name and affiliations, abstract, 

keywords, introduction, materials and 

method, result and discussion, 

conclusion, acknowledgement (optional), 

and references.  

  

Review Paper  

A review paper is an invited article 

up to 5000 words (including table and 

figures in good resolution). Review paper 

summarizes the current state of 



 

  

knowledge of the topic supported by up 

to date and reliable references. It creates 

an understanding of the topic for the 

reader by discussing the findings 

presented in recent research papers. A 

review paper synthesizes the results from 

several primary literature papers to 

produce a coherent argument about a 

topic or focused description of a field.   
 

Short communication  

A short communication is a 

condensed version of research article, 

written without chapters, up to 3500 

words (including table and figures in good 

resolution). It consists of title, authors 

name and affiliations, abstract, keywords, 

main content, and references. The main 

content of the article should represent 

introduction, materials and method, result 

and discussion, and conclusion, prepared 

without headings. A short communication 

should contribute an important novelty for 

science, technology, or application.  

The authors are fully responsible for 

accuracy of the content. Any 

correspondence regarding the 

manuscript will be addressed to the 

correspondent author who is clearly 

stated including his/her email address, 

telephone and fax  number (including 

area code), and the complete mailing 

address. The correspondent author will 

handle corresponddence with editor 

during reviewing process. The author are 

required to suggest two potential 

reviewer names including their email 

address.  

  

Preparation of the manuscript    

a. The manuscript should be written in a 

good English. It must be type written 

on A4 paper by using Microsoft Word 

processor with Arial font 12 and 1.15 

spaced.  

b. Indicate line numbers in each page of 

the whole manuscript.  

c. All table and figures should be pre 

pared in good resolution and separate 

pages.  

d. The manuscript has not been 

published in any proceeding of 

scientific meeting or conference.  

e. When animal/human subject is 

involved in the invivo study, ethical 

clearance should be included in the 

manuscript by stating the number of 

ethical approval obtained from ethic 

committee.  

f. The perfection of English should be 

made by author own colleague of the 

same scientific background, fluent in 

English, before submission.  

g. Soft copy of a manuscript should be 

sent to the editor by email.  

  

GUIDELINE FOR THE MANUSCRIPT 

CONTENT  

Title  

a. The title of the article should be brief 

and informative (max. 10 words) in 

Arial font 16 and 1.15 spaced. 

b. Each word of the title is initiated with 

capital letter, except for the species 

name of organisms.  

c. The institution where authors are  

affiliated should be completely 

written (institution name). 

d. The name(s) of the author(s) should 

not be abbreviated.  

 

Abstract  

a. Abstract written in one paragraph in 

English and 250 to 300 words.  

b. The abstract should state briefly 

background, material and method, the 

main findings supported by 

quantitative data which is relevant to 

the title, and the major conclusions.  

Keywords  

      The keywords consist of no more 

than  5 important words not found in the 



 

  

title, representing the content of the article 

and can be used as internet searching 

words and arranged in alphabetical order.  

  

Content, Tables and Figures  

Content includes introduction, 

materials and methods; result and 

discussion, conclusion, acknow-

ledgement, and references.  

 

Example:  

Figure 6 Experiment on incubation 
time of recombinant manCK7 for palm 
kernel meal treatment:  

a. at 1 hour until 5 hour, and  

b. 4 hour until 16 hour. Blanko = PKM 
treated with buffer phosphate pH 7, 
enzyme = PKM treated with recombinant 
manCK7.  

  

Introduction  

The introduction states background 

of the research, including its novelties, 

supported mainly by the relevant 

references and ended with the objectives 

of the research.  

  

Materials and Methods  

a. The materials used should include 

manufacture and source. Specific 

instruments and equipment should 

be described clearly.  

b. The methods used in the study 

should be explained in detail to allow 

the work to be reproduced. 

Reference should be cited if the 

method had been published.  

c. Any modified procedures of the cited 

methodology should be explained 

clearly indicating which parts 

modifications had been made.  

d. Experimental design being used 

includes sampling technique and 

statistical analysis should be 

explainned in detail.  

  

Results and Discussion  

a. Results of the study should be 

presented as the starting point of 

discussion.  

b. The discussion of the results should 

be supported by relevant references.  

c. The title of tables and figures should 

be numbered consecutively 

according to their appearance in the 

text.  

d. Statistical data in figures and tables 

must include standard deviation (SD) 

or standard error of mean (SEM) or 

other statistical requirements.  

  

Conclusion  

Conclusion is drawn based on the 

objectives of the research.  

  

Acknowledgement (if necessary)  

Acknowledgement contains the 

institution name of funding body/grants 

/sponsors or institution which provides 

facilities for the research project, or 

persons who assisted in technical work 

and manuscript preparation.  

  

References  

References are arranged accord-ing 

to Council of Science Editors (CSE) 

Style: Harvard system or name year 

system. Please further refer to 

https://writing.wisc.edu/Handbook/DocC

SE_NameYear .html Reference from the 

internet is written along with the date ac-

cessed. Minimum 80% of the cited 

references should be from the journals 

published within the last 10 years. Digital 

object identifier (DOI) number should be 

mentioned, if applicable.  

  

Examples:  

Journal article  

References for journal articles 

follow the order Author(s). Year.Article 

title. Abbreviated journal title. 

Volume(issue):pages. To save space, 



 

  

CSE suggests that writers abbreviate the 

titles of journals in according to the ISO 4 

standard, which you can read about at 

ISSN. You can also search ISSN’s List of 

Title Word Abbreviations.  

  
Pahan I, Gumbira-Sa’id E,Tambunan M. 

2011. The future of palm oil 

industrial cluster of Riau region 

Indonesia. Eur J Soc Sci. 24(3):421-

431.  

Purnamasari MI, Prihatna C, Gunawan 

AW, Suwanto A. 2012. Isolasi dan 

identifikasi secara molekuler 

Ganoderma spp. yang berasosiasi 

dengan penyakit busuk pangkal 

batang di kelapa sawit. J Fitopatol 

Indones. 8(1):9-15. DOI: 

10.14692/jfi.8.1.9.  

Van Duijn G. 2013. Traceability of the 

palm oil supply chain. Lipid Technol. 

25(1):15- 18. DOI: 

10.1002/lite.201300251.  

  

Book  

References for books follow the order 

Author(s). Year.Title. Edition. Place of 

publication (Country Code): publisher.  

  
Allen C, Prior P, Hayward AC. 2005. Bac-

terial wilt: the disease and the Ralsto- 

nia solanacearum species complex. 

St. Paul (US): APS Press.  

  

Book chapter  

References for chapters or other parts of 

a book follow the order Author(s). Year. 

Chapter title. In: Editor(s). Book title. 

Place of publication: publisher. Page 

numbers for that chapter.  

  
Allen C. 2007. Bacteria, bioterrorism, and 

the geranium ladies of Guatemala. 

In: Cabezas AL, Reese E, Waller M, 

editors. Wages of empire: neoliberal 

policies, repress-sion, and women’s 

poverty. Boulder (US): Paradigm 

Press. p. 169- 177.  

Otegui MS. 2007.Endosperm: develop- 

ment and molecular biology. In: Olson 

OA, editor. Endosperm cell walls: 

formation, composition, and 

functions. Heidelberg (DE): Springer. 

p. 159178.  
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Galey proof will be sent by email to 

correspondence author. The corrected 

proof should be returned within 5 working 
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