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Universitas Padjajaran

ABSTRACT

Indonesia's coastal oil palm plantations face unprecedented threats from accelerating sea
level rise, with regional rates of 4—5 mm year™ significantly exceeding global averages. This study
presents the first comprehensive satellite-based assessment of sea level rise impacts on coastal
oil palm vulnerability, focusing on Dumai City, Riau Province. We utilized five primary datasets
spanning from 2020-2024: Landsat 8/9 and Sentinel-2 imagery for plantation mapping, SRTM
DEM for topographic analysis, satellite altimetry for sea level measurements, and ground truth data
for validation. Cross-wavelet analysis revealed an exceptionally strong negative correlation (r = -
0.857) between sea level anomalies and coastal land cover changes, with a 30-day lag period
indicating plantation ecosystem response time. NDVI trend analysis showed significant vegetation
decline (-0.072 NDVl/year) over the study period, with plantation health deteriorating from optimal
conditions in 2020 (mean NDVI: 0.608) to critical levels by 2024 (mean NDVI: 0.335). Land cover
change detection revealed extensive palm oil expansion (+4,848 ha, +26.3%) occurring through
conversion of natural forest (-3,114 ha, -22.8%) and mangrove ecosystems (-1,300 ha, -19.5%).
Results reveal that 78% of coastal oil palm plantations are located within 5 km of shoreline on low-
lying areas with elevations below 3 meters above sea level. The vulnerability assessment identified
2,847 hectares (64% of total coastal plantations) as highly vulnerable to inundation and saltwater
intrusion, representing USD 12.3 million in annual production value at risk.

Keywords: Climate adaptation, coastal vulnerability, NDVI trend, remote sensing, satellite altimetry
INTRODUCTION both subsidence and sea level rise
(Descals et al. 2019; Xu et al. 2020). Riau

Indonesia's oil palm industry  Province accounts for 2.4 million hectares

produces 47% of global palm oil supply and
contributes significantly to the national
economy, yet faces increasing vulnerability
to climate change impacts, particularly sea
level rise in coastal regions (BPS 2020;
Danylo et al. 2021). The country's oil palm
cultivation has expanded to over 16 million
hectares, with substantial portions located
in low-lying coastal provinces where
plantation development concentrated on
coastal peatlands inherently susceptible to

*Corresponding author:

of oil palm plantations, representing 20% of
national production, with over 80%
established on coastal peatlands experi-
encing ongoing subsidence due to
drainage required for cultivation (Sumarga
et al. 2016).

The intersection of oil palm cultivation
and coastal vulnerability creates complex
challenges for sustainable agricultural
development. Recent studies have
documented the interconnected impacts of
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peatland drainage, subsidence, and
coastal flooding on oil palm production
systems (Hooijer et al. 2012; Sumarga et
al. 2016). Drainage required for oil palm
cultivation on peatlands causes progress-
sive soil subsidence, with rates reaching
2.8 cm year™ in newly drained areas,
progressively increasing flood risks and
threatening plantation viability as oil palm
is highly sensitive to waterlogged
conditions (Hooijer et al. 2012). Further-
more, coastal peatland degradation
increases vulnerability to tidal flooding and
saltwater intrusion, with formerly protective
coastal ecosystems now contributing to
agricultural vulnerability rather than provid-
ing natural protection (Hastuti et al. 2022).

Despite these methodological
advances, no comprehensive study has
systematically assessed the vulnerability of
Indonesian coastal oil palm plantations to
sea level rise using integrated satellite
remote  sensing approaches. This
knowledge gap is particularly critical given
the rapid pace of both sea level rise and oll
palm expansion in Indonesian coastal
areas, with some coastal areas
experiencing combined land subsidence
and sea level rise rates exceeding 10 cm
year™' (Lumban-Gaol et al. 2024).

MATERIALS AND METHODS

This study focuses on Dumai City,
Riau Province, Sumatra, Indonesia (1°40'N
—1°45'N,  101°25'E-101°30'E),  which
serves as a representative case study for
coastal oil palm vulnerability assessment
(Figure 1). Dumai City was selected due to
its strategic importance as a major palm oil
export hub, with approximately 80% of the
municipal area consisting of coastal
peatlands where extensive oil palm
cultivation has been established over the
past three decades (Siegel et al. 2019).
The study area encompasses approxi-
mately 1,623 km? of coastal lowlands with
elevations ranging from 0 to 15 meters
above sea level, characterized by
extensive peat deposits with depths
reaching 3—8 meters (Baum et al. 2007).
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Figure 1 Study area location map showing

Dumai City, Riau Province,
Indonesia with coastal zone
boundaries.

The coastline extends approximately
45 km along the Malacca Strait, featuring a
complex mosaic of oil palm plantations,
natural mangrove remnants, aquaculture
ponds, and urban development. Dumai
experiences a tropical humid climate with
annual precipitation of approximately 2,500
mm and mean temperatures of 26-28 °C
throughout the year, conditions optimal for
oil palm cultivation but creating challenges
for drainage management on peat soils
(Siegel et al. 2019). The area is influenced
by semi-diurnal tides with ranges of 1.5-
3.5 meters, creating extensive intertidal
zones that directly interact with plantation
drainage systems.

Data Sources

This research utilized five compre-
hensive datasets spanning 2020-2024.
Landsat 8/9 Optical Imagery was obtained
from the United States Geological Survey
(USGS) Earth Explorer platform, with
Landsat Collection 2 Level-2 Surface
Reflectance  products selected for
consistent atmospheric correction
(Vermote et al. 2016). A total of nine cloud-
free images were acquired on specific
dates: 2020-10-18, 2021-02-23, 2021-06-
15, 2021-07-17, 2021-08-02, 2023-06-13,
2024-07-25, 2024-09-19, and 2024-12-16.
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Sentinel-2 Multispectral Imagery was
downloaded from the European Space
Agency's Copernicus Open Access Hub,
utilizing Level-2A Surface Reflectance
products providing enhanced 10-meter
spatial resolution (Drusch et al. 2012).

Sea level altimetry data was obtained
from the Copernicus Marine Environment
Monitoring Service (CMEMS) Multi-
Mission Altimeter Satellite Gridded Sea
Level Anomalies dataset, providing daily
mean sea level anomalies at 0.125° spatial
resolution for the Malacca Strait region
(IPCC 2021). Digital Elevation Model data
from the Shuttle Radar Topography
Mission (SRTM) at 30-meter resolution
was utilized following the vegetation
correction methodology of O'Loughlin et al.
(2016). Ground truth data for classification
accuracy assessment contained 609
reference  points distributed across
different plantation types, ages, and
environmental conditions.

Data Processing and Analysis

All satellite imagery processing was
conducted using open-source software
including QGIS 3.28 and Python-based
libraries (GDAL, Rasterio, NumPy) to
ensure reproducibility (Hansen et al. 2013).
Landsat images were atmospherically
corrected using the Land Surface
Reflectance Code (LaSRC) algorithm,
which accounts for atmospheric scattering
effects in tropical coastal environments
(Vermote et al. 2016). Geometric
correction was systematically applied to
ensure precise co-registration between
multi-temporal images using ground
control points identified from stable
infrastructure features. Oil palm plantations
were mapped through systematic visual
interpretation of Sentinel-2 imagery
combined with automated vegetation index
analysis, following established criteria for
plantation identification including regular
geometric planting patterns, characteristic
canopy texture, and spectral properties
(Descals et al. 2019; Nurmasari and
Wijayanto 2021). Four primary land cover
classes were defined: oil palm plantations
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(subdivided into young 0-5 years and
mature >5 years), natural forest and
mangroves, other agriculture and bare
land, and water bodies.

Normalized Difference Vegetation
Index (NDVI) was calculated from all
available imagery using the standard
formula NDVI = (NIR - Red) / (NIR + Red),
where NIR represents near-infrared
reflectance and Red represents red
wavelength reflectance (Xu et al. 2021). A
comprehensive dekadal analysis was
implemented covering 180 dekads (36
dekads per year x 5 years) from 2020-
2024, with temporal interpolation applied to
fill data gaps using spline interpolation
methods. Cross-wavelet analysis between
sea level anomalies and oil palm plantation
health indicators was performed following
the methodology of Grinsted et al. (2004).
The analysis involved systematic time
series preprocessing with detrending and
normalization, followed by Butterworth
bandpass filtering targeting periods of 20—
90 days. Continuous Wavelet Transform
analysis was implemented using Morlet
wavelets with a central frequency
parameter of w, = 6 (Torrence and Compo
1998). A comprehensive plantation
vulnerability assessment was developed
by adapting the Coastal Vulnerability Index
methodology of Hastuti et al. (2022)
specifically for oil palm agricultural
systems. The assessment incorporated
five key variables: coastal slope, elevation
above mean sea level, distance from
coastline, substrate type, and plantation
age. Each wvulnerability variable was
systematically  classified into  five
vulnerability categories ranging from very
low to very high risk, with rankings
assigned based on established thresholds
for oil palm cultivation requirements
(Sumarga et al. 2016).

RESULTS AND DISCUSSION

Oil Palm Plantation Distribution and
Vulnerability

According to our thorough spatial
analysis, oil palm plantations will dominate
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the land-use type in the Dumai coastal
region by 2024, occupying roughly 23,276
hectares. Significantly, 78% of these
plantations are located within five
kilometers of the coast, mostly on low-lying
peatlands with mean elevations less than
three meters above sea level, an area that
is extremely susceptible to tidal flooding
and sea level rise (Sumarga et al. 2016).
An analysis of the age distribution reveals
that mature stands created between 1995
and 2010 make up 68% of the planted
area. With their closed canopies and vast
infrastructure networks, these established
plantations are a significant financial
investment and are especially vulnerable
to climate-related effects like flooding and
soil subsidence (Descals et al. 2019).
There is extensive evidence linking
peatland drainage to  progressive
subsidence, which frequently occurs at
rates of 2.8 cm/year (Hooijer et al. 2012,
Sumarga et al. 2016). Approximately 29%
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of peatland plantations were already below
safe elevation levels by 2009, according to
patterns mirrored in the Rajang Delta
(Sarawak, Malaysia). If current subsidence
continues, it is predicted that 56% of these
plantations will be flooded in 50 years (Hein
et al. 2022).
NDVI Temporal and
Plantation Health

A clear and statistically significant
decline in vegetation vigor is evident in the
dekadal NDVI time-series for Dumai's
coastal oil palm plantations (2020-2024;
Figure 2), with mean NDVI dropping from
0.608+0.089 in 2020 to 0.335+0.038 by
2024. Compared to the usual inter-annual
fluctuations observed in tropical oil palm
systems, the linear trend of -0.072 NDVI
units yr ' (R?=0.892, p<0.001) suggests a
persistent degradation trajectory
(Nurmasari and Wijayanto 2021; Xu et al.
2021).

Dynamics

—e— 2020 —— 2023
—s— 2021 —e— 2024
—e— 2022

¢ LongTermAverage (2020-2024)

dekad

Figure 2 NDVItemporal analysis of oil palm plantations (2020—-2024) showing dekadal time
series, annual means, and trend analysis for coastal plantation areas in Dumai
City with seasonal patterns and management cycle impacts.
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The temporal analysis demon-
strated pronounced inter-annual variability,
with 2020 representing optimal plantation
conditions characterized by a mean NDVI
of 0.608+0.089, reflecting healthy canopy
development and optimal productivity
conditions. This optimal condition was
followed by a systematic decline beginning
in 2021 when mean NDVI decreased to
0.521+0.067, marking the onset of a
persistent degradation trend that may

reflect the combined impacts of
environmental stress, aging plantation
infrastructure, and changing climate

conditions affecting palm productivity (Xu
et al. 2021). By 2024, conditions had
deteriorated to reach critical levels with a
mean NDVI of 0.335+£0.038, representing
the lowest plantation vigor recorded during
the entire study period.

This downward trajectory is confirmed
to be steep and statistically significant by
trend analysis (-0.072 NDVI units annually;
R?=0.892, p<0.001). The most severe loss
happened between 2020 and 2022, when
canopy vigor decreased by 0.273 NDVI
units, or 45 percent, in just two years. This
is significantly more than the range of
natural inter-annual variability for tropical
oil palm systems and suggests severe
environmental stress as opposed to normal
ageing (Xu et al. 2021). Once electrical
conductivity surpasses ~4 dS/m, saltwater
intrusion and tidal flooding are known to
cause osmotic stress on roots and
deteriorate soil structure (Hooijer et al.
2012; Sumarga et al. 2016). At the same
time, ground elevations have decreased
and waterlogging events have been
prolonged due to subsidence rates of about
2.8 cm yr™' caused by peatland drainage
for cultivation (Hooijer et al. 2012; Hein et
al. 2022). Rather than just reflecting
seasonal senescence, these hydrological
stressors collectively are responsible for
the NDVI's systematic downward shift. The
time series does, in fact, exhibit mid-year
dekadal peaks that correspond to short
bursts of favourable moisture conditions
(Drusch et al. 2012); however, the
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amplitude of these seasonal rebounds
significantly  diminishes  after 2021,
indicating cumulative stress residue in
plantation health. The value of remote-
sensing indices as early-warning indicators
for saltwater and flood stress is highlighted
by a strong negative correlation (r = -0.857
at a 30-day lag) between NDVI and sea-
level anomalies, which provides a 30-day
response window for adaptive manage-
ment interventions (Torrence and Compo
1998; Grinsted et al. 2004).

Satellite-Ground Truth Validation

The comparison between Harmo-
nized Landsat-Sentinel (HLS) satellite data
and ground sensor measurements (Figure
3) provided crucial validation of remote
sensing accuracy for oil palm plantation
monitoring. Ground sensor data,
comprising 609 observations collected
throughout the study period from various
plantation locations and age classes,
consistently showed higher NDVI values
compared to satellite observations, with
mean values of 0.671+0.095 and a range
spanning from 0.388 to 0.926 (Nurmasari
and Wijayanto 2021). Conversely, the two
HLS Sentinel-2 pixels that were available
produced mean NDVI values that were
lower, at 0.488+0.002, suggesting that HLS
consistently underestimates in comparison
to measurements made on the ground.
This discrepancy results from the spatial
averaging that 30 m resolution sensors
inherently have (Claverie et al. 2018) as
well as the well-established mixed-pixel
effects that are common in agricultural
landscapes that are fragmented and
heterogeneous (Zhang et al. 2003). While
absolute NDVI values may vary between
area-averaged satellite observations and
point-based ground measurements, this
validation exercise also shows that HLS
captures significant canopy dynamics due
to the close temporal correspondence
between the two-time series, which are
characterized by peaks and troughs
occurring within the same dekadal windows
(r = 0.85, p<0.001) (Berra et al. 2024).
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Figure 3 Satellite-ground truth validation for oil palm monitoring showing comparison
between HLS satellite data and ground sensor measurements with temporal
patterns and accuracy assessment for plantation health indicators.

Topographic Vulnerability Assessment

Elevation estimates that are crucial
for assessing flood risk in coastal
plantation areas are significantly biased
due to oil palm canopy interference, as
demonstrated by the vegetation correction
applied to the SRTM DEM (Figure 4). In
accordance with O'Loughlin et al. (2016),
the analysis found mean vegetation
heights of 4.05+1.12m across oil palm
plantation areas by correlating plantation
NDVI with canopy height. Maximum
heights in mature stands reached 6.72 m.
These vegetation effects demonstrated the
significant influence of oil palm vegetation
on radar-derived elevation measurements,
resulting in mean elevation corrections of
2.23 £0.85 m, with maximum adjust-ments
up to 3.00 min areas with the densest palm
canopy cover. Following vegetation
correction, mean elevation values
decreased from 21.36 m to 19.14 m,
indicating that many plantation areas are

significantly lower and more susceptible to
flooding than previously thought. Serious
ramifications result from this downward
adjustment: floodplain boundaries can be
moved by several hundred meters due to a
1 m error in coastal DEMs (Sampson et al.
2016). Interestingly, the uncorrected DEM
would have incorrectly placed about 30%
of plantation areas above critical elevation
thresholds (>3 m), which after correction
fell below or close to this limit. SRTM-
based coastal hazard assessments are
therefore  vulnerable to  systematic
underprediction bias in the absence of
vegetation correction, a problem that has
been shown in flood and sea-level rise
studies worldwide (Kulp and Strauss
2016). In order to generate precise hazard
mapping that can guide site selection,
drainage infrastructure design, and land-
use policy particularly in low-lying coastal
oil palm plantations, vegetation-corrected
DEMs must be used (Baugh et al. 2013).
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Figure 4 Topographic analysis and vegetation correction showing: (a) original SRTM DEM,
(b) oil palm plantation NDVI distribution, (c) estimated canopy height corrections,

and (d)
Sea Level Rise
Response Coupling

The cross-wavelet analysis (Figure 5)
revealed exceptionally strong coupling
between sea level anomalies and oil palm
plantation health indicators, demonstrating
one of the most robust climate-agricultural
relationships documented in tropical
coastal environments. The analysis
identified a maximum cross-correlation of r
-0.857, representing a very strong
negative relationship between sea level
variations and plantation vegetation vigor
that indicates systematic impacts of
oceanic  conditions on terrestrial
agricultural productivity (Grinsted et al.
2004). This correlation was optimized at a
lag time of 30 days, indicating that
plantation ecosystem responses to sea
level forcing occur approximately one
month after oceanographic changes,

and Plantation

vegetation-corrected DEM for accurate flood

risk assessment.

providing valuable early warning potential
for plantation management and adaptive
responses to environmental stress. The
dominant coupling period identified
through the cross-wavelet transform was
180 days, corresponding to intra-seasonal
climate interactions that influence both
oceanic and terrestrial systems in the
Indonesian coastal region (Torrence and
Compo 1998).

The consistently negative correlation
indicates  that rising sea levels
systematically reduce oil palm plantation
vigor through multiple interconnected
mechanisms including saltwater intrusion
into plantation drainage systems, tidal
inundation  creating prolonged  soil
saturation stress, coastal erosion threate-
ning plantation infrastructure, and storm
surge amplification  during extreme
weather events.
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Figure 5 Sea level rise and oil palm plantation response analysis showing: (a) time series
correlation with lag optimization, (b) filtered signals demonstrating coupling
relationships, and (c) cross-wavelet coherence spectrum for different time scales.

Mechanistically, rising sea levels
cause saltwater intrusion into drainage
systems and ongoing soil saturation. This
phenomenon has also been seen in rice
paddy systems, where saline intrusion led
to observable drops in NDVI (Tivianton et
al. 2021). In tropical coastal wetlands,
where saltwater intrusion hinders plant
transpiration and alters soil-aeration
dynamics, similar ecohydrological feed-
backs have been reported (Perri and Molini
2022 Sep 23). These empirical parallels
lend credence to the idea that sea level rise
affects photosynthetic efficiency and
canopy vigor in oil palm directly, possibly
through osmotic stress and root-zone
hypoxia, in addition to altering groundwater

regimes. Our findings highlight the
systemic  vulnerability of  low-lying
plantations to climate-driven oceano-

graphic shifts, especially considering the
documented effects of sea-level rise on
salinisation and productivity loss in deltaic
agricultural zones (Oelviani et al. 2024).
The temporal coupling shown here further
supports the incorporation of NDVI-based
remote sensing and real-time sea-level
monitoring into plantation risk-mana-
gement frameworks, allowing for prompt

interventions to prevent infrastructure
damage and maintain productivity in
vulnerable coastal landscapes.

Land Cover Transitions and Plantation
Expansion

Multi-temporal  analysis revealed
significant land cover transitions over the 5-
year study period (Figure 6), demon-
strating extensive ecosystem restructuring
driven by continued oil palm expansion
concurrent with environmental degradation
processes. The most substantial change
observed was the continued expansion of
oil palm plantations, which increased by
4,848 hectares representing a 26.3%
growth from 18,428 hectares in 2020 to
23,276 hectares in 2024, indicating
persistent investment in coastal plantation
development despite increasing environ-
mental risks (Gaveau et al. 2019).

This expansion rate significantly
exceeds the national average decline in oil
palm development observed in other
Indonesian regions (Austin et al. 2019).
This expansion occurred through sys-
tematic conversion of remaining natural
ecosystems, with natural forest areas
experiencing the largest absolute loss of
3,114 hectares (22.8%), decreasing from
13,668 hectares in 2020 to 10,554 hectares
in 2024. Mangrove ecosystems, which
provide critical coastal protection services
and natural buffers against sea level rise
impacts, experienced significant degra-
dation with a loss of 1,300 hectares
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Figure 6 Land cover change analysis (2020-2024) showing spatial patterns of oil palm
expansion, forest conversion, and ecosystem transitions in the Dumai coastal
zone with quantified area changes for each land cover category.

(19.5%), declining from 6,664 hectares to
5,364 hectares, indicating the systematic
removal of natural infrastructure that helps
protectinland plantation areas from coastal
flooding and saltwater intrusion (Hastuti et
al. 2022). With a ratio of 2.13 million
hectares versus 0.72 million hectares
nationwide, industrial plantations have
displaced more forest than smallholder
plantings, which is consistent with larger
trends seen throughout Southeast Asia.
Nonetheless, the rate of growth in the
Dumai region points to a concentration of
industrial-scale development, which could
be fuelled by existing infrastructure
investments and advantageous agro-
climatic conditions (Obidzinski et al. 2012).
When compared to Indonesia's larger
forest conservation objectives and
international climate commitments, this
rate of deforestation raises serious
environmental concerns. In addition to
destroying important habitats  for
biodiversity, the conversion of primary and
secondary forests to oil palm plantations
drastically lowers the area's capacity to

sequester carbon (Dislich et al. 2017).
After a ten-year decline, recent data shows
that palm oil deforestation has returned to
Indonesia, with companies removing
forests in 2023 for the second year in a row.

The Dumai coastal zone may be a
part of a larger resumption of forest
conversion activities, according to this
trend, which runs counter to earlier
optimistic assessments of Indonesia's
progress towards zero deforestation goals
(Pacheco et al. 2017) With a loss of 1,300
hectares (19.5%) from 6,664 hectares to
5,364 hectares during the study period, the
analysis shows especially alarming trends
in the degradation of mangrove eco-
systems. Given the vital role mangroves
play in protecting coastlines and assisting
with climate adaptation, this decline is
particularly noteworthy. Given that average
shoreline change rates vary greatly among
Indonesian coastal regions, mangroves
are crucial in slowing down the rate of
coastal erosion and lowering the coastal
vulnerability index.
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Plantation Vulnerability Classification
and Economic Risk

The comprehensive vulnerability
assessment (Figure 7) revealed that 2,847
hectares of oil palm plantations,
representing 64% of total coastal
plantations in the study area, are classified
as highly vulnerable to sea level rise
impacts based on the integrated analysis
of elevation, coastal proximity, substrate
type, and plantation characteristics.

Fluctuation Function F(n)

ssssssss

R=0.985 R0.973

(a)

Scaling Exponent

Figure 7 Qil palm plantation vulnerability
assessment showing spatial
distribution of  vulnerability
classes, risk factors, and priority
areas for climate adaptation
measures in the Dumai coastal
zone.
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These highly vulnerable plantations
are predominantly located on peatland
substrates within 2 kilometers of the
coastline at elevations below 2 meters
above sea level, where the combination of
land subsidence and sea level rise creates
compound risks that threaten plantation
viability within the next two decades under
current climate scenarios (Sumarga et al.
2016). Similar hotspot patterns have been
documented in Sabah, Malaysia, where
low-lying peat palm plantations showed
greater than 60% vulnerability by 2050 to
moderate sea level scenarios. Tidal
flooding, saltwater intrusion, and infra-
structure destabilisation are examples of
coastal threats that are complex and have
multiple components, as evidenced by the
spatial concentration of high-risk areas
(Temmerman et al. 2013).

The highly vulnerable plantation
tracts have an annual production value of
about USD 12.3 million (BPS 2020), which
is in line with the USD 4,300-5,200 ha™
regional palm oil revenue densities that
were reported in Riau Province. In addition
to crop losses, the analysis identified 89
drainage pump stations, 145 km of access
roads, and 15 processing mills located
within the high-vulnerability zone. These
resources support water management and
logistical connectivity, but they are more
likely to fail in the face of rising flood
frequency and salinity stress (Nicholls and
Cazenave 2010; Baugh et al. 2013).
According to international esti-mates, if sea
level rise is not stopped, up to 20% of
Southeast Asia's coastal agricultural
infrastructure may become unusable by
the middle of the century, requiring
multimillion-dollar replacement and
downtime expenses (Neumann et al. 2015;
Kulp and Strauss 2018). In order to protect
production value and operational integrity,
our findings support prioritizing adaptation
investments in areas like coastal
embankments, subsidence control, and the
strategic relocation of vital facilities.
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Climate Adaptation Implications

The exceptionally strong negative
correlation (r = -0.857) between sea level
anomalies and oil palm plantation health
represents one of the strongest
documented climate-agricultural coupling
relationships in tropical coastal environ-
ments, revealing the acute vulnerability of
Indonesian oil palm systems to oceanic
forcing (Lumban-Gaol et al. 2024). The 30-
day lag period identified through cross-
wavelet analysis provides critical insights
into the temporal dynamics of environ-
mental impacts on oil palm systems,
suggesting that plantation managers have
approximately one month to implement
adaptive responses following sea level
anomalies before vegetation health
indicators begin to deteriorate measurably.

The primary mechanisms driving this
strong coupling include saltwater intrusion
into plantation drainage systems, which
disrupts the carefully managed hydrology
essential for oil palm cultivation on
peatland substrates (Hooijer et al. 2012).
Oil palm trees are particularly sensitive to
soil salinity, with productivity declining
significantly when electrical conductivity
exceeds 4 dS/m, a threshold frequently
exceeded during tidal flooding events in
coastal plantation areas (Sumarga et al.
2016). The 30-day early warning potential
identified through cross-wavelet analysis
could enable plantation managers to
implement proactive measures including
temporary drainage adjustments, pro-
tective flooding of vulnerable areas, and
strategic harvest timing to minimize
productivity losses during periods of
elevated sea level risk.

The wvulnerability patterns docu-
mented in Dumai City likely represent
conditions across Indonesia's coastal oil
palm regions, where similar combinations
of peatland substrates, low elevation, and
sea level rise exposure create widespread
vulnerability to climate impacts (Gaveau et
al. 2019). If the 64% high vulnerability rate
observed in Dumai is representative of
other coastal plantation areas, approxi-
mately 2.4 million hectares of Indonesia's

Panggabean et al.

oil palm cultivation could face similar risks,
potentially threatening 15% of global palm
oil production and creating significant
implications for international commodity
markets and food security.

CONCLUSION

This study provides several key
findings regarding sea level rise impacts on
Indonesian coastal oil palm plantations:

1. Strong Climate-Agricultural Coupl-
ing: The analysis revealed an
exceptionally strong negative correla-
tion (r = -0.857) between sea level
variability and plantation health, with a
30-day lag period that provides valuable
early warning potential for adaptive
management interventions.

2. Systematic  Vegetation  Decline:
Significant NDVI decline of -0.072 year™
was observed across coastal planta-
tions, indicating systematic environ-
mental stress that threatens productivity
and economic viability, with plantation
health  deteriorating from optimal
conditions in 2020 (mean NDVI: 0.608)
to critical levels by 2024 (mean NDVI:
0.335).

3. High Vulnerability Assessment: The
vulnerability assessment identified
2,847 hectares (64%) of coastal oil palm
plantations as highly vulnerable to sea
level rise impacts, representing approxi-
mately USD 12.3 million in annual
production value at risk from climate
change effects.

4. Geographic Risk Concentration:
Vulnerable plantations are predomi-
nantly located on peatland substrates
within 5 kilometers of the coastline at
elevations below 3 meters above sea
level, where the combination of ongoing
peat subsidence and accelerating sea
level rise creates compound risks.

5. Methodological Contribution: This
study establishes the first comprehen-
sive, multi-sensor satellite assessment
framework for vulnerability evaluation,
providing a replicable methodology
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applicable to other coastal plantation
regions and supporting evidence-based
adaptation planning.

6. Future Implications: The findings
demonstrate urgent need for integrated
coastal management strategies that
address both agricultural sustainability
and environmental protection, with the
30-day early warning potential offering
valuable lead time for implementing
protective measures and adaptive
management responses
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ABSTRACT

Palm oil adulteration poses significant health and economic risks, necessitating accurate
detection methods. This study develops a machine learning framework combining KNN, SVM,
and Random Forest via weighted model averaging to analyze synthetic FTIR spectra simulating
pure and adulterated palm oil. SVM emerged as the top performer (97.3% accuracy),
significantly outperforming Random Forest (86.9%) and KNN (85.9%). Principal Component
Analysis revealed distinct clustering, with PC1 (63.3% variance) strongly correlate with key
adulteration markers like ester C=0 (1745 cm™) and OH (3300 cm™) vibrations. Spectral
segmentation identified the 1000-1100 cm™ region (C-O stretches) as most critical for
detection, enabling a proposed two-stage screening protocol that reduces analysis time by 60%
while maintaining >90% accuracy for 5% adulterant concentrations. The synthetic dataset,
validated against experimental references, replicated physicochemical trends, including peak
broadening in oxidized samples (+20% FWHM) and dye-specific N=O peaks (1520 cm™).
Model averaging enhanced stability, reducing performance variability to 1.2% versus 3.5-4.8%
for individual models. These results highlight SVM’s superiority in handling high-dimensional
spectral data and non-linear patterns, while the methodological advances—including noise
modeling (SNR = 40 dB) and feature selection—offer practical solutions for portable FTIR
devices. The framework supports real-time adulteration screening in resource-limited settings,
with implications for food safety regulation and loT-based quality monitoring in global palm oil
supply chains.

Keywords: Ensemble learning, machine learning, model averaging, palm oil adulteration,
simulated data

collected from traditional markets showed
signs  of adulteraton with  harmful
substances such as used cooking oil,

INTRODUCTION

Palm oil is a strategic commodity for

Indonesia, playing a crucial role in national
food security and the global economy. In
recent years, however, the issue of
adulteration—intentional tampering  of
palm oil with hazardous substances—has
emerged as a serious threat to food safety.
According to data from the Indonesian
Food and Drug Authority (BPOM) in 2023,
approximately 28% of palm oil samples
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Email: ngurahsentana@apps.ipb.ac.id

Rhodamine B textile dyes, and organic
solvents. This issue is not confined to
Indonesia alone; the European Food
Safety Authority (EFSA) has reported that
around 15% of products containing palm
oil in European markets fail to meet purity
standards, indicating the global scale of
the problem. The health implications of
adulterated palm oil are particularly
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alarming. A study by Universitas Indonesia
(2022) revealed that consuming palm oil
contaminated with used cooking oil
increases the risk of cardiovascular
disease by up to 40%, due to the presence
of trans fatty acids and carcinogenic
peroxides. Moreover, synthetic dyes such
as Methanil Yellow, commonly used to
enhance the color of low-quality palm oil,
have been proven to cause liver and
kidney damage, as demonstrated by
toxicological studies conducted at IPB
University (Ahmad et al. 2021).

Economically, adulteration inflicts
considerable damage on the palm oil
industry. The Indonesian Palm Oil
Producers Association (APROBI)
estimates that annual losses amount to
IDR 3.5 trillion due to product quality
degradation and declining international
consumer trust. The situation is further
exacerbated by inadequate field
surveillance. Data from the Ministry of
Trade indicate that only 35% of traditional
markets in Indonesia are equipped with
rapid testing tools for adulteration
detection.  While conventional analytical
techniques such as gas chromatography-
mass spectrometry (GC-MS) and high
performance liquid chromatography
(HPLC) are highly accurate, they are costly
(IDR 2-5 million per test), time-consuming
(4-8 hours per sample), and require skilled
personnel (Suryanto et al. 2022).

In this context, Fourier-Transform
Infrared (FTIR) Spectroscopy emerges as
a promising alternative due to its rapid
(less than five minutes), non-destructive,
and cost-effectiveanalysis approxi-
mately IDR 50,000-100,000 per sample).
FTIR works by detecting molecular
vibrations that produce specific absorption
patterns for each compound. However,
manual interpretation of FTIR spectra
presents several critical limitations. First,
there is significant spectral overlap
between authentic palm oil and
adulterants, such as the C=0 ester peak at
1745 cm™ overlapping with the carboxylic
acid C=0 peak at 1710 cm™. Second,
stages: first, independent optimization of
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baseline variation caused by scattering
effects impedes quantitative analysis.
Third, the technique is less sensitive to
low-level adulteration (<3%) due to
instrument resolution constraints (Rohman
& Windarsih 2023; Zhang et al. 2022).

Recent advances in analytical
spectroscopy have highlighted the
potential of machine learning (ML)
approaches to overcome these

challenges. Prior studies have applied
various ML algorithms to FTIR spectral
analysis with promising results. For
example, de Santana et al. (2019)
successfully applied Support Vector
Machines (SVM) to detect olive oll
adulteration with an accuracy of 89%,
while Li et al. (2021) developed a
Convolutional Neural Network (CNN)
model that achieved 92% accuracy in
identifying adulterated palm oil.
Nonetheless, these studies face persistent
limitations, including the scarcity of publicly
available FTIR datasets (e.g. the NIST
2023 database contains only ~200
adulterated palm oil spectra), model
overfitting due to spectral variations across
instruments, and the high computational
burden of processing high-resolution
spectra comprising thousands of data
points (Wang et al. 2023).

To address these limitations, this
study proposes a novel framework
incorporating model averaging ensemble
learning as a core solution. The model
averaging strategy combines the predictive
strengths of three machine learning
algorithms—K-Nearest Neighbor (KNN),
Support Vector Machine (SVM), and
Random Forest (RF)—through weighted
probability averaging, where each base
model contributes based on its cross-
validation performance. This approach
offers three main advantages: (1) reducing
individual model bias through weighted
voting; (2) enhancing prediction stability
against spectral noise; and (3) providing
uncertainty estimates via the joint
probability distribution. The implementa-
tion of model averaging involves three key
each base learner; second, determination
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of combination weights based on
validation accuracy; and third, integration
of probabilistic predictions using a softmax
function. Preliminary experiments using
500 simulated FTIR spectra demonstrated
a significant increase in classification
accuracy from 82% (best single model) to
94%, with a false positive rate below 3%.
Furthermore, model averaging achieved
greater consistency, with a standard
deviation of only 1.2% across 50 cross-
validation runs, compared to 3.5—4.8% for
individual models.

To further mitigate data limitations,
this study also constructs a synthetic FTIR
spectral dataset using empirically derived
spectroscopic parameters. Additionally, a
segmentation-based preprocessing
strategy is applied, focusing on key
spectral regions (e.g. 1745 cm™, 1160
cm™, and 2925 cm™) to reduce noise and
computational complexity. These
innovations not only enhance classification
performance but also improve model
interpretability. Ultimately, this research
aims to contribute to the development of
an accurate, robust, and scalable
detection system for palm oil adulteration.
The proposed framework holds strong
potential for real-time implementation in
traditional markets through Internet of
Things (loT) integration and supports
national food safety programs, including
the Ministry of Health’s School Children
Snack Food Safety Initiative (PJAS). By
strengthening both technological and
operational aspects of adulteration

Putra

detection, this study seeks to safeguard
public health and maintain the global
competitiveness of Indonesian palm oil.

MATERIALS AND METHODS

The synthetic FTIR spectra were
systematically generated to replicate the
characteristic absorption patterns of pure
and adulterated palm oil samples. Each
spectrum was constructed as a
superposition of  Gaussian  peaks
representing key functional groups, with
parameters carefully calibrated against
experimental references from the NIST
Chemistry WebBook and published
spectroscopic studies. The simulation
incorporated four distinct classes: (1) pure
palm oil, (2) palm oil mixed with 5% used
cooking oil, (3) palm oil mixed with 5%
synthetic dye, and (4) palm oil mixed with
5% water.

The FTIR spectral simulation was
meticulously  designed to replicate
authentic measurement conditions through
several key technical implementations.
Class specific spectral modifications were
systematically incorporated, with each
adulterant  type  exhibiting  distinct
vibrational signatures: used oil samples
showed marked intensity increases in acid
C=0 stretching (1700-1715 cm™, +700%)
and oxidized C-O vibrations (1140-1160
cm™), while synthetic dye adulteration
introduced characteristic N=0 (1510-1530
cm™) and C=N (1610-1630 cm™) peaks.
Water contamination produced the most
dramatic spectral changes, generating

Table 1 Characteristic FTIR Functional Groups for Palm Qil Adulteration Detection

Functional Region Characteristic Notes Reference
Group (cm™)
Ester C=0O 1735-1750 Dominant peak in pure palm oil, Rohman & Che
stretch decreases in adulterated Man (2012)
samples
Acid C=0 1700-1715 Marker for oxidation/used oil, Syahir et al. (2020)
stretch increases significantly (>700%)
in adulterated samples
CH, 1460-1470 Aliphatic chain marker, slight Silverstein et al.
scissoring intensity  variations  across (2014)
classes
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broad OH stretching bands (3200-3600
cm™) with intensity enhancements
exceeding 100-fold, accompanied by the
distinctive water bending vibration at 1640
cm™'. To ensure spectroscopic realism, the
simulation incorporated multiple noise and
variability factors: baseline artifacts were
modeled using second-order polynomials
with random coefficients (R? = 0.85-0.98),
while additive white noise at SNR =40 dB
with sporadic spike artifacts (0.5%
occurrence) replicated instrumental
limitations. The simulation accounted for
peak broadening phenomena, particularly
for oxidized components which exhibited
15-20% wider FWHM values compared to
pure oil references. Parameter variability
followed normal distributions (uto) with
controlled correlations-peak widths
showed significant positive correlation with
oxidation degree (r = 0.72, p<0.01), while
baseline effects intensified characteris-
tically in the high-wavenumber region
(3000—-4000 cm™).

The final dataset comprised 1,000
synthetic spectra (250 per adulteration
class) spanning 400-4000 cm™ at 2.12
cm™ resolution (1,700 data points per
spectrum), achieving complete spectral
representation with computational
efficiency (12 ms generation time per
spectrum on standard hardware). This
balanced dataset successfully captured the
essential spectroscopic fingerprints of palm
oil adulteration while maintaining controlled,
physiochemically ~meaningful variability,
crucial for developing robust machine
learning models capable of handling real-
world spectral variations and instrumental
artifacts. The simulation parameters were
rigorously validated against experimental
reference data from NIST and published
spectroscopic studies to ensure physical
accuracy.

Model Development

The machine Ilearning framework
incorporated three distinct classification
algorithms, each selected for their
complementary  strengths in  handling
spectroscopic data. The K-Nearest Neigh-
bors (KNN) algorithm (Cover and Hart 1967)
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implemented a cosine similarity—based
voting system among k = 5 nearest
neighbors, optimized through elbow method
analysis. Support Vector Machines (SVM)
(Cortes and Vapnik 1995) employed an RBF
kernel with C = 1.0, maximizing the
hyperplane margin through grid search
optimization. Random Forest (Breiman
2001) utilized an ensemble of 100 decision
trees with unlimited depth, employing
bootstrap aggregation to enhance predictive
stability. Model hyperparameters were
systematically optimized using Bayesian
optimization techniques, balancing
computational efficiency with performance
maximization. The ensemble strategy
employed weighted probability averaging to
combine predictions from all three base
models.  Weight  assignments  were
dynamically calculated based on 5-fold
cross-validation accuracy scores, ensuring
optimal contribution from each classifier. This
approach mathematically combined the
probabilistic outputs as Pavg(y|x) = 2 wm
Pm(y|x), where weights were normalized
through the relation. The weighting
mechanism automati-cally emphasized more
accurate models while maintaining the
diversity benefits of ensemble learning.

Comprehensive Analytical Workflow

The experimental protocol followed a
rigorous seven-stage process: (1) stratified
data partitioning (70:30 ratio for training, and
testing sets); (2) feature subset evaluation
across 17 spectral regions; (3) weighted
model averaging implementation; (4) multi-
metric performance assessment (including
macro-averaged precision, recall, and F1-
scores). This robust validation framework
ensured reliable performance estimation
while maintaining biological relevance
through comparison with experimental
results.

RESULTS AND DISCUSSION

Spectral Signature Characterization

The PCA results revealed distinct
clustering patterns among the four oil
classes, with PC1 accounting for 63.3% of
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total variance-significantly higher than PC2
(2.1%) and PC3 (6.3%). Pure palm oil
samples formed a tight cluster in the
negative PC1 region (-50 to -100),
demonstrating  spectral  consistency.
Adulterated samples showed progressive
dispersion along PC1: used oil mixtures
occupied the -50 to 0 range, synthetic dye
samples appeared between 0-50, and
water-adulterated oils clustered in the 50-
100 region. This clear separation along the
first principal component suggests that
major  adulteration-induced spectral
changes are captured by variations in ester
C=0 (1745 cm™) and OH (3300 cm™)
vibrations, which dominate the PC1
loading plot (not shown). The minimal
variance explained by PC2/PC3 indicates
these components primarily capture noise
and baseline artifacts rather than
chemically meaningful variations.

The stacked FTIR spectra exhibited
three diagnostically important regions:

1. Carbonyl Region (1700-1750 cm™):
Pure oil showed a dominant ester C=0
peak at 1745 cm™ (A = 0.90£0.02) that
decreased by 5-7% in adulterated
samples. Used oil displayed a
characteristic shoulder at 1710 cm™ (A
= 0.08+0.01) from acid C=0 groups.

2. Dye Marker Region (1500-1650 cm™):
Synthetic dye adulteration introduced
two new peaks at 1520 cm™ (N=0) and
1620 cm™ (C=N), absent in other
samples.

3. Hydroxyl Region (3000-3600 cm™):
Water adulteration caused a broad OH
stretch (A = 0.12+0.02) with 120x

Figure 1 PCA Visualization plot
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intensity increase versus pure oil, while
used oil showed minor OH broadening
from oxidation products.

The spectral changes correlate
strongly with PCA clustering patterns—
PC1 values increased proportionally with
OH band intensity (R?>=0.91) and inversely
with ester C=0 intensity (R? = 0.85). This
confirms that our simulation successfully
captured the key physicochemical
differences between adulteration types
while maintaining realistic spectral noise
characteristics. The 2.12 cm™ resolution
allowed clear discrimination of closely
spaced peaks (e.g., 1710 vs 1745 cm™),
which would be critical for real-world
detection of low-concentration adulterants
(<5%).

The clear separation in PCA space
(Figure 1) suggests excellent potential for
machine learning classification, particularly
for water adulteration which showed the
most distinct spectral and PCA signatures.
However, the partial overlap between used
oil and synthetic dye samples along PC2
indicates these classes may require more
sophisticated spectral preprocessing or
feature selection. The preserved peak
shapes and positions in Figure 2 validate
our Gaussian simulation parameters
against experimental references,
particularly for the:

1. Ester peak width (FWHM = 15£1 cm™
vs literature 14-16 cm™)

2. Water OH band shape (asymmetric
broadening toward 3000 cm™)

3. Dye peak ratios (N=O/C=N intensity
ratio = 1.25+0.15)

Average FTIR Spectra
1.0 1 — pure Paim Oil M
Mixed with Used Oil
—— Mixed with Synthetic Dye
d with Water

02 U

i VAN L\J \ J

4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm-)

Figure 2 Average FTIR Spectra plot
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These results demonstrate that our
synthetic dataset maintains sufficient
physicochemical fidelity for developing
adulteration detection algorithms while
providing controlled variability for robust
model training. The next section will
quantify how these spectral differences
translate to actual classification
performance across different machine
learning approaches.

Model Averaging (KNN, SVM, RF)

The comprehensive analysis of
machine learning model performance
across FTIR spectral subsets reveals
several critical insights for palm oil
adulteration detection. As shown in the
visualization, all three models (KNN, SVM,
and Random Forest) exhibit distinct
performance patterns that correlate
strongly with specific spectral regions. The
SVM classifier demonstrates superior
performance with peak accuracy reaching

0.9in subset 5, corresponding to the 1000—
1100 cm™ region that contains
characteristic  C-O ester stretching

vibrations—a key molecular fingerprint of
palm oil quality. This region's exceptional
discriminative power likely stems from its
sensitivity to chemical alterations caused
by common adulterants like used cooking
oil, synthetic dyes, or water. The Random
Forest algorithm shows more consistent
intermediate  performance (0.45-0.88)
across subsets, suggesting greater
robustness to spectral variations, while
KNN displays the highest variability (0.22-
0.85), indicating stronger dependence on
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optimal feature selection. Notably, three
spectral regions (subsets 3, 6, and 13,
potentially containing C=0O stretches at
1745 cm™, CH, deformations at 1465
cm™, and C-O stretches at 1170 cm™)
maintain moderate accuracy (0.4-0.6)
across all models, serving as reliable
secondary  markers. The poorest
performance in subsets 0-2 and 7-9 (likely
representing the fingerprint region below
1000 cm™) confirms this area's limited
chemical specificity for adulteration
detection. These findings have significant
practical implications: (1) they validate
SVM as the optimal algorithm for handheld
FTIR adulteration detectors due to its
combination of high peak accuracy and
chemical interpretability, (2) they identify
1000-1100 cm™ as the most critical
spectral window for rapid screening,
enabling potential hardware optimizations
in portable devices, and (3) they
demonstrate how strategic feature
selection can reduce computational
requirements by up to 80% (focusing on
just 5 key subsets) without sacrificing
detection accuracy.

The consistent alignment between
model performance patterns and known
FTIR biomarkers of oil degradation
(increased acid C=0 at 1710 cm™) and
adulteration (N=0O stretches at 1520 cm™
from dyes, broad OH bands from water)
further  confirms the simulation's
physicochemical validity and suggests
these machine learning approaches are
capturing scientifically meaningful spectral
patterns rather than artifacts. For industrial

Model Performance Across Feature Subsets

(a) KNN Performance by Feature Subset

(b) SVM Performance by Feature Subset

(c) Random Forest Performance by Feature Subset

Figure 3 Average FTIR Spectra plot
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applications, these results recommend a
two-stage detection protocol: initial rapid
screening using only subset 5 features with
SVM, followed by confirmatory analysis
incorporating subsets 3, 6, and 13 when
borderline results occur. This approach
could reduce analysis time by 60% while
maintaining over 90% detection accuracy
for common adulterants at concentrations
as low as 5%.

The comparative analysis of model
performance reveals that Support Vector
Machine (SVM) consistently outperforms
bothn Random Forest and K-Nearest
Neighbors (KNN) in the classification of
FTIR spectral data. SVM achieves an
outstanding average balanced accuracy of
0.973 with a standard deviation of only
10.010, indicating not only superior
accuracy but also exceptional consistency.
This result significantly surpasses the
performance of Random Forest (0.869+%
0.032) and KNN (0.859+0.023), marking an
absolute performance advantage of
approximately 10—-11%. The strong margin
suggests that SVM is particularly well-
suited for this task, likely due to its
capability in capturing complex, non-linear
decision boundaries inherent in high-
dimensional spectral data.

Further exploration of consistency
across iterations supports this conclusion.
SVM exhibits minimal variation, with all
iteration scores ranging between 0.943 and
0.993 (range = 0.050), reinforcing its
robustness across various subsets of the
data. In contrast, Random Forest shows a
wider performance spread, ranging from
0.797 to 0.937 (range = 0.140), suggesting
that its output is more sensitive to data
variations and potentially noise. Although
KNN’s overall accuracy is slightly lower, it
displays relatively stable behavior (range =
0.817-0.917; std = 0.023), positioning it as
the most stable among non-SVM models.

Insights from statistical distribution
further confirm these findings. The boxplot
visualization  highlights SVM’s tight
interquartile range (Q1 = 0.968, Q3 =
0.980), underscoring the model's reliability
and consistent high performance. Random
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Forest and KNN exhibit broader
interquartile ranges (IQR = 0.037 and IQR
= 0.034, respectively), indicating greater
variability in their predictive outcomes.
Nonetheless, both ensemble-based
methods—SVM and Random Forest—
achieve higher maximum accuracies than

KNN, affirming their superior learning
capabilities.
From a practical standpoint, SVM

emerges as the optimal choice for
applications that demand high reliability,
particularly where balanced accuracy
exceeding 95% is critical—such as in
quality control, medical diagnostics, or food
safety surveillance. Meanwhile, Random
Forest may be considered in contexts
where interpretability of results and feature
importance are essential, offering enable
accuracy while providing transparency into
variable contributions. Although KNN ranks
lowest in accuracy, its simplicity and
computational efficiency may still render it
suitable in resource-constrained or real-
time settings.

The observed 11% performance gap
between SVM and the other models implies
that the classification problem involves
non-linear  and complex decision
boundaries, which SVM is inherently
designed to handle. The results suggest
that the FTIR spectral data is well-
separated in a high-dimensional feature
space, a scenario where SVM excels. In
contrast, the comparable performances of
Random Forest and KNN indicate that local
proximity-based decisions, while effective
to some extent, may not fully capture the
global spectral patterns critical for accurate
classification.

Areas for potential improvement have
also been identified. The high performance
of SVM may be attributed to its robustness
in  handling  high-dimensional data,
particularly when using an RBF kernel,
which is well-suited for modeling non-linear
spectral patterns. Further investigations
could explore the impact of kernel choice
and hyperparameter tuning. For Random
Forest, increasing tree depth or
incorporating targeted feature selection
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Figure 4 Model Summary

strategies may help reduce model variance
and improve predictive performance.
Meanwhile, KNN could benefit from
experimenting with alternative distance
metrics or applying weighted voting
schemes to Dbetter capture feature
relevance. In summary, the results clearly
validate SVM as the most effective
algorithm for this specific spectral
classification task, demonstrating superior
accuracy, robustness, and reliability across
multiple iterations. These findings align
with theoretical expectations, reinforcing
the notion that SVMs are particularly adept
at pattern recognition in high-dimensional
domains such as FTIR spectroscopy.

CONCLUSION

This study demonstrates that SVM
outperforms Random Forest and KNN in
detecting palm oil adulteration via FTIR
spectroscopy, achieving superior accuracy
(0.973 £ 0.010) and robustness. The model
averaging approach successfully combines
the strengths of multiple algorithms, while
spectral analysis identifies 1000—-1100 cm™
as the most discriminative region. These
findings enable rapid, reliable adulteration
screening, supporting food safety initiatives
and industrial quality control.
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ABSTRACT

Palm oil, a native crop of West Africa, emerged as a key industrial commodity in the 19
century, fundamentally shaping economic and environmental landscapes in both Europe and
Southeast Asia. While its importance in European industrialization has been widely
acknowledged, the early colonial expansion of oil palm cultivation in Indonesia and its impact on
deforestation remains less discussed. This paper explores the intertwined economic, political,
and environmental dimensions of palm oil trade in Europe post-1800 and the early plantation-
based land conversion in Indonesia before 1945. Drawing on archival sources, historical records,
and academic studies, it highlights the dual role of palm oil as both an enabler of industrial

progress and a driver of ecological transformation.

Keywords: Colonial Indonesia, deforestation, Europe, industrial revolution, palm oil trade

INTRODUCTION

In recent decades, the European
Union has increasingly criticized oil palm
cultivation for its role in tropical defo-
restation, citing environmental concerns in
regulations such as the Renewable Energy
Directive (RED) and the EU Deforestation
Regulation (EUDR). lIronically, it was
European industrial and colonial interests
that first globalized palm oil and promoted
its cultivation on a large scale.

The transformation of palm oil from a
regional West African product into a
globally traded commodity began in the
19" century, driven by European demand
for industrial lubricants, soap, and candles
(Lynn 1997; Martin 1988). In Southeast
Asia, particularly in colonial Indonesia,
systematic plantation development was
*Corresponding author:

Indonesia Oil Palm Society, Bogor, 16143
Email: darmonot@gmail.com
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initiated by Dutch and Belgian entre-
preneurs in the early 20" century. This dual
trajectory—industrial  consumption  in
Europe and plantation expansion in
Indonesia—underscores the historical
roots of palm oil's economic significance
and ecological consequences.

The objectives of this study are to
examine the role of palm oil in the
European industrial economy during the
19" century; analyze the historical
processes that led to the establishment of
oil palm plantations in colonial Indonesia
before 1945; assess the early environ-
mental implications, particularly deforesta-
tion, linked to plantation expansion in
Indonesia; and provide a comparative
perspective on how European demand and
colonial land-use policies intertwined to
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shape the global palm oil industry.

MATERIALS AND METHODS

This study employs a qualitative
historical research approach. Data were
obtained from archival sources, such as
colonial records, company documents, and
trade statistics; secondary literature,
including academic monographs
(Hobsbawm 1968, Stoler 1985, Cramb &
McCarthy 2016), journal articles, and
economic histories; and comparative
analysis of European industrial trajectories
and colonial land-use transformations. The
research method integrates historiography
and comparative economic analysis to
reconstruct the dual narratives of palm oil
development in Europe and Indonesia.

RESULTS AND DISCUSSION

Palm Oil in the European Industrial
Economy (1800-1900)

The Industrial Revolution in Britain
created unprecedented demand for indus-
trial lubricants, soap, and candles, where
palm oil found strategic use (Hobsbawm
1968, Lynn 1997). By 1830, Liverpool had
become the hub of palm oil imports.
Following the abolition of the slave trade in
1807, palm oil exports became central to
“legitimate commerce” in West Africa
(Martin 1988, Falola & Genova 2005).

European trading companies, such as
the Royal Niger Company, expanded their
commercial networks, embedding palm oll
into imperial commerce (Akindele 2017).
By the late 19t century, imports of palm oil
into Europe had increased tenfold,
supplying industries in Britain, France, the
Netherlands, and Germany (Kiple &
Ornelas 2000).

Palm Oil and Deforestation in Colonial
Indonesia (1848-1945)

Oil palm was first introduced to
Indonesia in 1848 through the Bogor
Botanical Gardens (Boomgaard 1996,
Drayton 2000). Initial cultivation remained
limited until 1911, when Belgian entre-
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preneurs Adrien Hallet and Henri
Fauconnier established the first com-
mercial estates near Medan (Stoler 1985).
Between 1911 and the 1940s, plantations
expanded across eastern Sumatra under
companies such as Socfin, leading to the
conversion of tropical forests into
monoculture estates (Potts 1990, Cramb &
McCarthy 2016). Dutch colonial policies
classified forests as “idle land,” legitimizing
deforestation for plantation agriculture
(Boomgaard 1996). Indigenous commu-
nities were either displaced or integrated as
contract laborers under exploitative
systems (Stoler 1985).

Table 1 shows comparative historical
trajectories of palm oil between Europe
(post-1800) and colonial Indonesia (pre-
1945), highlighting differences in industrial
drivers, key actors, land-use impacts, labor
dynamics, and socio-political legacies.
While Europe integrated palm oil into
industrial supply chains without direct land-
use change, Indonesia experienced large-
scale deforestation and the establishment
of plantation systems that laid the
foundation for post-1970s expansion. Table
2 shows quantitative indicators of palm oil
development in Europe and colonial
Indonesia, in 1800-1945. The data
illustrate the asymmetry between Europe’s
industrial consumption (driven by imports)
and Indonesia’s plantation-based
production (driven by deforestation and
labor exploitation).

The results highlight a dual but
interconnected trajectory. In Europe, palm
oil enabled industrialization, replacing
whale oil, and serving as a substitute after
the abolition of slavery. Its industrial uses
embedded palm oil into consumer culture,
from soap and candles to margarine,
making it a vital commodity in European
markets (Richardson 1992). In Indonesia,
colonial  authorites and  European
companies transformed landscapes
through plantation agriculture. Although the
pre-1945 expansion was less extensive
than the massive growth post-1970s, it
established crucial ecological precedents:
monoculture cultivation, large-scale land
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Table 1 Comparative historical trajectories of palm

Indonesia (pre-1945)
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oil in Europe (post-1800) and

Aspect

Europe (Post-1800)

Indonesia (Pre-1945)

Timeline

1800s: Palm oil replaces whale
oil;

1830s: Liverpool becomes import
hub;

1869: Margarine invented;
1900s: Europe fully industrialized
with palm oil inputs

1848: First oil palm introduced
to Bogor;

1911: Hallet & Fauconnier
establish first estates near
Medan;

1910s-1940s: Expansion
across Sumatra under Socfin
and Dutch concessions

Primary Driver

Industrial revolution (lubricants,
soap, candles, margarine);
abolition of slave trade

Colonial plantation economy,
export orientation, integration
into global markets

Key Actors

British trading firms (Royal Niger

Company, UAC); soap and
candle industries (Lever
Brothers/ Unilever); European
merchants

Dutch colonial government;
Belgian entrepreneurs (Hallet
& Fauconnier); plantation
companies (Socfin)

Land Use Impact

No direct land-use change in
Europe; indirect stimulation of
African smallholder production

Large-scale conversion of
tropical rainforests in Sumatra
into monoculture plantations

Economic Logic

Shift from slave trade to
‘legitimate commerce”; integra-
tion into industrial supply chains

Framing forests as “idle land”;
transformation into cash-crop
estates for export revenue

Labor Dynamics

Reliance on African smallholder
producers and coastal inter-
mediaries

Displacement of indigenous
populations; recruitment of
Javanese contract laborers
and local workers

Scale/Extent

Palm oil imports to Europe
increased tenfold by late 19"
century (Lynn 1997)

By 1940, >250,000 ha of
plantations established in
Sumatra (Stoler 1985, Cramb
& McCarthy 2016)

Environmental
Consequences

Minimal direct impact in Europe;
indirect pressure on West African
ecosystems

Early deforestation, biodiver-
sity loss, soil degradation;
ecological precedent for post-
1970s expansion

Socio-political

Driven by European industrial

Institutionalized by  Dutch

Dimension policies and mercantile agrarian laws and concession
capitalism system; consolidation of

plantation belt
Legacy Embedded in European con- Established plantation modelin

sumer products and global trade
networks

foundation  for
dominance in

Indonesia;
Indonesia’s
global palm oil
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conversion, and displacement of
indigenous land-use systems. A compa-
rative perspective reveals asymmetry:
Europe consumed palm oil without
bearing direct land-use costs, while
colonial Indonesia bore the ecological
and social burden of deforestation. This
reflects the colonial logic of “productive
land”, where forests were redefined as
idle resources awaiting transformation
into economic assets (Bisschop 2012).
By 1940, Indonesia had become a
significant exporter of palm oil, supplying
global markets that had once relied
almost exclusively on West Africa

Taniwiryono

(Corley & Tinker, 2016). This historical
shift set the stage for Indonesia’s
dominance in the industry, but also
embedded  structural challenges—
monoculture risks, ecological
vulnerability, and labor exploitation—that
continue to shape sustainability debates
today. These intertwined histories
complicate current European critiques of
palm oil. Understanding that Europe
once depended heavily on palm oil, and
actively promoted its colonial expansion,
provides historical balance to contem-
porary sustainability debates under
frameworks like RED and EUDR.

Table 2 Quantitative indicators of palm oil development in Europe and colonial Indonesia

(1800—1945)

Indicator Europe (Post-1800) Indonesia (Pre-1945) Sources
Palm oil By 1850, ~30,000 tons By 1940, Indonesia Lynn 1997;
imports / annually imported into exported ~250,000- Stoler 1985
exports Britain; by 1900, 300,000 tons of crude
>250,000 tons into palm oil annually
Europe (tenfold increa- (mainly from Sumatra
se) estates)
Cultivated area Not applicable (Europe 1911: first estates esta- Boomgaard
had no plantations; relied blished near Medan; by 1996;
on imports from Africa 1939, ~250,000 hec- Cramb &
and colonies) tares of plantations in McCarthy
Sumatra 2016
Labor force Trade intermediaries and Tens of thousands of Stoler 1985;
African smallholders Javanese and local Cramb &
dominated supply chains workers recruited under McCarthy
colonial ‘contract 2016
coolie” system
Industrial use Soap, candles, marga- Primarily crude oil Hobsbawm
rine, lubricants; integral exports for European 1968;
to industrial and con- processing; limited local Richardson
sumer economies downstream industries 1992
Environmental Indirect: pressure on Direct: widespread Boomgaard
impact West African ecosystems rainforest clearance in 1996;
but no direct European Sumatra; Dbiodiversity potts 1990
deforestation loss and soil degra-
dation
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CONCLUSION

Palm oil’s trajectory from 1800 to
1945 reflects both industrial progress in
Europe and ecological transformation in
Indonesia. In Europe, it was central to the
Industrial Revolution and consumer
goods, while in Indonesia, it catalyzed
deforestation and plantation-based
economies under colonial rule. Recog-
nizing this shared history offers important
lessons for present-day debates on
sustainability, deforestation, and the
future of the palm oil industry.

REFERENCES

Akindele A. 2017. The legacies of
colonialism and development in
Africa: The case of Nigeria and the
palm oil industry. African Economic
History. 45(1): 89-114.

Bisschop M. 2012. Cultivating Colonies:
Colonial States and the Making of Oil
Palm in Southeast Asia. Birill.

Boomgaard P. 1996. Forests and
Forestry in Colonial Java, 1677-
1897. KITLV Press.

Corley RHV & Tinker PB. 2016. The Oil
Palm (5™ ed.). Wiley-Blackwell.

Cramb R & McCarthy JF. 2016. The Oil
Palm Complex: ~ Smallholders,
Agribusiness and the State in
Indonesia and Malaysia. NUS Press.

Drayton R. 2000. Nature’s Government:
Science, Imperial Britain, and the
‘Improvement’ of the World. Yale
University Press.

Falola T, Genova A. 2005. The Politics of
the Global Oil Industry: An
Introduction. Praeger.

Hobsbawm EJ. 1968. Industry and
Empire: From 1750 to the Present
Day. Penguin Books.

Kiple KF, Ornelas KC. 2000. The
Cambridge World History of Food.
Cambridge University Press.

Lynn M. 1997. Commerce and Economic
Change in West Africa: The Palm Oil
Trade in the Nineteenth Century.
Cambridge University Press.

28

Taniwiryono

Martin SM. 1988. Palm Oil and Protest:
An Economic History of the Ngwa
Region,  South-Eastern  Nigeria,
1800-1980. Cambridge University
Press.

Potts DT. 1990. The early expansion of
palm oil in Southeast Asia. Journal of
Southeast Asian Studies. 21(2):301—-
315.

Richardson BC. 1992. British Caribbean
Economic  History,  1800-1975.
University of the West Indies Press.

Stoler AL. 1985. Capitalism and
Confrontation in Sumatra’s
Plantation Belt, 1870-1979.
University of Michigan Press.

Wariboko T. 2010. Economic
Development and Moral Formation
in Africa. Palgrave Macmillan.



INTERNATIONAL
JOURNAL
of OIL PALM

ISSN: 2599-3496 print
ISSN: 2614-2376 online

SCOPE, POLICY, AND AUTHORS GUIDELINES
INTERNATIONAL JOURNAL OF OIL PALM (IJOP)

ABOUT INTERNATIONAL JOURNAL OF
OIL PALM (IJOP)

International Journal of Oil Palm
(IJOP) is an online and print mode, peer
reviewed research journal published by
Indonesian Oil Palm Society (Masyarakat
Perkelapa Sawitan Indonesia, MAKSI), it
provides a global publication platform for
researcher, scholars, academicians,
professionals and students engaged in
research in oil palm industries. The main
aim of IJOP is to become the world’s
leading journal in oil palm that is preferred
and trusted by the community through
publishing authentic, peer reviewed and
scientifically developed research articles
of international caliber. The journal is
published two times in a year, at least 3
papers per publication, and the language
of the journal is English.

JOURNAL SCOPE

IJOP publishes research papers in
the fields of soil and crop fertilizer
application, seedling preparation, cover
crop management, leaf pruning, weed
control, control of pest and diseases,
insect pollinators management, water
management, intercropping, cattle oil
palm integration, environmental studies,
harvesting technology, IT remote sensing
GPS application, mechanization,
sustainability standards, policy studies,
social and economic studies, small
holders empowerment, palm oil mill
improvement, biomass utilization, carbon
footprint, water footprint, market studies,
refinery, food and nutrition technology
(oleofood, food safety, pharmaceutical

and nutraceutical) and also management
of soil preparation, inorganic and organic
safety, oleochemicals, downstream
industry development, supply chain, and
market studies.

The published articles can be in the
form of research articles, review paper or
short communications which have not
been published previously in other
journals (except in the form of an abstract
or academic thesis/dissertation or
presented in seminar/conference).

Editor in Chief
Donald Siahaan

Head of Editorial Management
Nur Wulandari

TYPES OF MANUSCRIPT
Research article

A research article is an original full
length research paper which should not
exceed 5000 words in length (including
table and figures in good resolution).
Research article should be prepared
according to the following order: title,
authors name and affiliations, abstract,
keywords, introduction, materials and
method, result  and discussion,
conclusion, acknowledgement (optional),
and references.

Review Paper

A review paper is an invited article
up to 5000 words (including table and
figures in good resolution). Review paper
summarizes the current state of



INTERNATIONAL
JOURNAL
of OIL PALM

knowledge of the topic supported by up
to date and reliable references. It creates
an understanding of the topic for the
reader by discussing the findings
presented in recent research papers. A
review paper synthesizes the results from
several primary literature papers to
produce a coherent argument about a
topic or focused description of a field.

Short communication

A short communication is a
condensed version of research article,
written without chapters, up to 3500
words (including table and figures in good
resolution). It consists of title, authors
name and affiliations, abstract, keywords,
main content, and references. The main
content of the article should represent
introduction, materials and method, result
and discussion, and conclusion, prepared
without headings. A short communication
should contribute an important novelty for
science, technology, or application.

The authors are fully responsible for
accuracy of the content. Any
correspondence regarding the
manuscript will be addressed to the
correspondent author who is clearly
stated including his/her email address,
telephone and fax number (including
area code), and the complete mailing
address. The correspondent author will
handle corresponddence with editor
during reviewing process. The author are
required to suggest two potential
reviewer names including their email
address.

Preparation of the manuscript

a. The manuscript should be written in a
good English. It must be type written
on A4 paper by using Microsoft Word
processor with Arial font 12 and 1.15
spaced.

b. Indicate line numbers in each page of
the whole manuscript.

c. All table and figures should be pre
pared in good resolution and separate

pages.
d. The manuscript has not been
published in any proceeding of

scientific meeting or conference.

e. When animal’lhuman subject s
involved in the invivo study, ethical
clearance should be included in the
manuscript by stating the number of
ethical approval obtained from ethic
committee.

f. The perfection of English should be
made by author own colleague of the
same scientific background, fluent in
English, before submission.

g. Soft copy of a manuscript should be
sent to the editor by email.

GUIDELINE FOR THE MANUSCRIPT
CONTENT

Title

a. The title of the article should be brief
and informative (max. 10 words) in
Arial font 16 and 1.15 spaced.

b. Each word of the title is initiated with
capital letter, except for the species
name of organisms.

c. The institution where authors are
affiliated should be completely
written (institution name).

d. The name(s) of the author(s) should
not be abbreviated.

Abstract

a. Abstract written in one paragraph in
English and 250 to 300 words.

b. The abstract should state briefly
background, material and method, the
main findings supported by
quantitative data which is relevant to
the title, and the major conclusions.

Keywords

The keywords consist of no more
than 5 important words not found in the



INTERNATIONAL
JOURNAL
of OIL PALM

title, representing the content of the article
and can be used as internet searching
words and arranged in alphabetical order.

Content, Tables and Figures

Content includes introduction,
materials and methods; result and
discussion, conclusion, acknow-

ledgement, and references.

Example:

Figure 6 Experiment on incubation
time of recombinant manCK7 for palm
kernel meal treatment:

a. at 1 hour until 5 hour, and

b. 4 hour until 16 hour. Blanko = PKM
treated with buffer phosphate pH 7,
enzyme = PKM treated with recombinant
manCK?7.

Introduction

The introduction states background
of the research, including its novelties,
supported mainly by the relevant
references and ended with the objectives
of the research.

Materials and Methods

a. The materials used should include
manufacture and source. Specific
instruments and equipment should
be described clearly.

b. The methods used in the study
should be explained in detail to allow
the work to be reproduced.
Reference should be cited if the
method had been published.

c. Any modified procedures of the cited
methodology should be explained
clearly indicating which parts
modifications had been made.

d. Experimental design being used
includes sampling technique and
statistical analysis should be
explainned in detail.

Results and Discussion

a. Results of the study should be
presented as the starting point of
discussion.

b. The discussion of the results should
be supported by relevant references.

c. The title of tables and figures should

be numbered consecutively
according to their appearance in the
text.

d. Statistical data in figures and tables
must include standard deviation (SD)
or standard error of mean (SEM) or
other statistical requirements.

Conclusion

Conclusion is drawn based on the
objectives of the research.

Acknowledgement (if necessary)

Acknowledgement contains the
institution name of funding body/grants
/sponsors or institution which provides
facilities for the research project, or
persons who assisted in technical work
and manuscript preparation.

References

References are arranged accord-ing
to Council of Science Editors (CSE)
Style: Harvard system or name year
system. Please further refer to
https://writing.wisc.edu/Handbook/DocC
SE_NameYear .html Reference from the
internet is written along with the date ac-
cessed. Minimum 80% of the cited
references should be from the journals
published within the last 10 years. Digital
object identifier (DOI) number should be
mentioned, if applicable.

Examples:
Journal article

References for journal articles
follow the order Author(s). Year.Article
title. Abbreviated journal title.
Volume(issue):pages. To save space,



INTERNATIONAL
JOURNAL
of OIL PALM

CSE suggests that writers abbreviate the
titles of journals in according to the ISO 4
standard, which you can read about at
ISSN. You can also search ISSN’s List of
Title Word Abbreviations.

Pahan |, Gumbira-Sa’id E,Tambunan M.
2011. The future of palm oil
industrial cluster of Riau region
Indonesia. Eur J Soc Sci. 24(3):421-
431.

Purnamasari MI, Prihatna C, Gunawan
AW, Suwanto A. 2012. Isolasi dan
identifikasi secara molekuler
Ganoderma spp. yang berasosiasi
dengan penyakit busuk pangkal
batang di kelapa sawit. J Fitopatol
Indones. 8(1):9-15. DOI:
10.14692/jfi.8.1.9.

Van Duijn G. 2013. Traceability of the
palm oil supply chain. Lipid Technol.
25(1):15- 18. DOI:
10.1002/lite.201300251.

Book

References for books follow the order
Author(s). Year.Title. Edition. Place of
publication (Country Code): publisher.

Allen C, Prior P, Hayward AC. 2005. Bac-
terial wilt: the disease and the Ralsto-

nia solanacearum species complex.
St. Paul (US): APS Press.

Book chapter

References for chapters or other parts of
a book follow the order Author(s). Year.
Chapter title. In: Editor(s). Book title.
Place of publication: publisher. Page
numbers for that chapter.

Allen C. 2007. Bacteria, bioterrorism, and
the geranium ladies of Guatemala.
In: Cabezas AL, Reese E, Waller M,
editors. Wages of empire: neoliberal
policies, repress-sion, and women’s

poverty. Boulder
Press. p. 169- 177.

Otegui MS. 2007.Endosperm: develop-
ment and molecular biology. In: Olson
OA, editor. Endosperm cell walls:
formation, composition, and
functions. Heidelberg (DE): Springer.
p. 159178.

(US): Paradigm

Proofs

Galey proof will be sent by email to
correspondence author. The corrected
proof should be returned within 5 working
days to ensure timely publication of the
manuscript.

Manuscript is sent to:
Website : www.ijop.id
E-mail : ijop.maksi@gmail.com


http://www.ijop.id/
http://www.ijop.id/

INTERNATIONAL
JOURNAL
of OIL PALM

ISSN: 2599-3496 print
ISSN: 2614-2376 online

sawit
BPDPKS




